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Geometrical similarity

Triangles are geometrically similar if

λ =
a′

a
=
b′

b
=
c′

c
,

with λ the similarity ratio (also called the scale factor or scale). This is an example

of isomorphic transformation.
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Geometrical similarity

Generalisation: an affine transformation conserves length ratios, with axis-dependent ratios

λx =
a′

a
et λy =

b′

b
,

with λx et λy the ratios in the horizontal and vertical direction.
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Geometrical similarity

Transformations that leave an object invariant

•Discrete transformation, e.g., rotation by π/2 for a square

•Continuous transformation, eg., rotation by an angle θ for a circle, translation by ε for a

straight line

Infinitesimal continuous transformations are key to constructing exact solutions.
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Geometrical similarity

Some continuous transformations Γ(θ) are one-dimensional Lie groups

•Γ(0) is identity Id

•Γ(θ1) ◦ Γ(θ2) = Γ(θ1 + θ2) (rule of closure)

• the inverse of Γ(θ) is Γ(−θ), and Γ(θ) ◦ Γ(−θ) = Id

• (Γ(θ1) ◦ Γ(θ2)) ◦ Γ(θ3) = Γ(θ1) ◦ (Γ(θ2) ◦ Γ(θ3)) (associativity)

Additional property: each image may be represented as a Taylor series in θ (for θ → 0)

x̂ = x + θ∂xΓ + O(θ2).
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Exercise 1

Can you find symmetries for this equation?
dy

dx
= −x

y
Solve this equation and comment on.
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Geometrical similarity: invariant

When applying an affine transformation,

•certain quantities are conserved. They are called invariants. For instance, taking

the ratio between the surface S and the product of half axes:

s =
S

ab
=
S ′

a′b′
= π.

•other quantities are not conserved. This is the case of the perimeter

P = 4

∫ π/2

0

√
a2 cos2 θ + b2 sin2 θdθ
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Scale invariance

An angle is scale invariant

α =
s

r
=
s′

r′
Scale invariant, but not affine invariant.
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Scaling law

Why are certain quantities conserved, whereas others are not?

A scaling law describes the proportionality relation between a quantity and the

scale(s) of the problem:

•perimeter P ∝ `,

•area S ∝ `2,

•volume V ∝ `3,

with ` a length scale of the object.
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Scale invariance

Log-log plot of the energy spectrum in the time domain in helium flow

between rotating cylinders

E(f ) = f−5/3

(Frisch, U., Turbulence, Cambridge University Press, Cambridge, 1995; p. 66)
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Scale invariance

Log-log plot of the basal metabolic rate of mammals and birds (in kcal/day) with

mass (M in kg)

BMR ∝M−3/4

(West, G.B., and J.H. Brown, The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and

organization, The Journal of Experimental Biology, 208, 1575-1592, 2005.)
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Scale invariance

Zipf’s law applied to agglomeration size

rank ∝ size−0.76

Clauset, A., C.R. Shalizi, and M.E.J. Newman, Power-Law Distributions in Empirical Data, SIAM Review, 51, 661-703, 2009.
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Fractal similarity

(Frisch, U., Turbulence, Cambridge University Press, Cambridge,

1995; p. 66)

Brownian motion: the aspect looks the same in the two

enlargements

my header

Similarity and Transport Phenomena in Fluid Dynamics 14
o



Fractal similarity
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Fractal similarity

Rivers forming tree-like figures in the desert of Baja California, Mexico (© Adriana

Franco)
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Invariance
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Exercises 2 and 3

2. Consider a rectangular triangle whose sides are a, b, c (a is the

hypothenuse). Plot the altitude perpendicular to the hypothenuse (In

geometry, an altitude of a triangle is a line segment through a vertex and

perpendicular to a line containing the base—the opposite side of the

triangle). What can you say about of the two triangles split by the

altitude? Can you give a proof of Pythagoras’ theorem?

3. Calculate the surface of an ellipse (Hint: make use of the affinity

between a circle and an ellipse).
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Physical similarity

We calculate the drag force F exerted by an incompressible Newtonian fluid on a

spherical particles with diameter 2r and density %p.

There are 5 variables: (1) the (unknown) drag force, (2) fluid viscosity µ, (3) fluid

density %, (4) particle radius r, and (5) the relative velocity u = |up − uf |. The

Vashy-Buckingham theorem states that we can build 5− 3 = 2 dimensionless

numbers.
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Physical similarity

The general dimensionless expression for the drag force read ψ(Cd, Re) = 0 or

Cd = φ(Re):

Cd =
F

1
2π%r

2u2
= φ(Re).

Cd is the drag coefficient. Solving the Navier-Stokes equations in the limit Re� 1

yields:

Cd =
F

1
2π%r

2u2
= φ(Re) =

24

Re
quand Re→ 0.

This is the Stokes law. In the limit Re� 1, experiments show that:

Cd =
F

1
2π%r

2u2
= φ(Re) ≈ 0, 4− 0, 5 when Re→∞.
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Physical similarity

Variation of the drag coefficient with the particle Reynolds number: Cd = F
1
2π%r

2u2

and Re = 2%ru
µ :
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Exercise 4

4. Consider a Newtonian fluid at rest and bounded by an infinite upper

boundary. The material is suddenly sheared by moving the boundary at

constant velocity. This is the Stokes’ first problem. Write the

Navier-Stokes equations. How can you simplify them? What are the

boundary conditions? Solve the equation and comment on the results.

(Hint: Use the Vaschy-Buckingham theorem and transform the NS

equation into an ODE).
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Exercise 5

5. Consider a Newtonian fluid at rest and bounded by an infinite upper

boundary. The material is suddenly experiencing a (constant) body force

(the boundary does not move). Write the Navier-Stokes equations. How

can you simplify them? What are the boundary conditions? Solve the

equation and comment on the results. (Hint: make a change of variable,

then transform the PDE into an ODE).
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Complete similarity

We are concerned with a water stream, whose variables

are: ū [m/s], h [m], g [m/s2], and θ [–]. The

gravitational acceleration g and θ are put together so

that there are only n = 3 variables. There are r = 2

fundamental units: m and s. Therefore, there is

n− r = 1 dimensionless group. This is the Froude

number Fr = ū/
√
gh sin θ. The physics of water

streams would entirely be embodied in the relation

Fr = cst⇒ ū ∝
√
gh sin θ.

This is the Chézy law.
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Incomplete similarity

But what about bed roughness?

Let us introduce the roughness scale ks [m]. There are n = 4 variables and r = 2

units. So there are 2 dimensionless groups, e.g., Π1 = Fr = ū/
√
gh sin θ and

Π2 = ks/h, and among them, there exists a relation in the form:

Π1 = f (Π2)⇒ ū = f (ks/h)
√
gh sin θ.

Since flow depth is usually much larger than ks, we expect ks/h→ 0 and f (ks/h)

should tend to a constant. If so, this is barely different from the Chézy law!
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Incomplete similarity

Another possibility is to assume that f behaves like a power function

f (ζ) = αζn,

with ζ = ks/h, α a dimensionless number, and n an exponent. We refer to this

behaviour as incomplete similarity. Under this assumption, we end up with

Π1 = αΠn
2 ⇒ ū = αknsh

1/2−n
√
g sin θ.

Taking n = −1/6 (from experimental observation) leads to the Manning-Strickler

flow resistance equation. Therefore the Strickler coefficient K is linked with ks:

K = α
√
gk−1/6

s .
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Historical background

•6th century BC: Thales of Miletus

•∼ 1830 Galois’ group theory

•1870–1900: Sophus Lie and Felix Klein (Backlünd, Noether, etc.)

•mid 20th century: Soviet physical school (Zeldovitch, Barenblatt, Sedov, etc.)

•mid 20th century: American mathematical school (Bluman, Anco, Olver)

• follow-on: renormalization group theory (Kadanoff, Wilson)
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