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Twice-extended group

An invariant of the twice-extended group is a function w(x, y, ẏ, ÿ) whose value at

an image point is the same as its value at the source point

w(x′, y′, ẏ′, ÿ′) = w(x, y, ẏ, ÿ)

We follow the same procedure as for Chapter 4: differentiate with respect to λ,

then set λ = λ0. We get

ξwx + ηwy + η1wẏ + η2wÿ = 0

whose characteristic equations are
dx

ξ(x, y)
=

dy

η(x, y)
=

dẏ

η1(x, y, ẏ)
=

dÿ

η2(x, y, ẏ, ÿ)
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Lie’s reduction theorem

A second-order differential equation can be written in the form

w(x, y, ẏ, ÿ) = 0

It can also be written as a pair of coupled differential equations of the first-order by

setting u = ẏ. The pair of equations must then be solved simultaneously

u = ẏ

w(x, y, u, u̇) = 0

Lie has shown how to reduce the problem of solving this system to that of solving

two first-order equations one at a time successively.
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Lie’s reduction theorem

If we start from

u = ẏ

w(x, y, u, u̇) = 0

we can plot curves in the space (x, y, u). If we set dx at a point (x, y, u), then we

solve the system of equations to deduce dy = udx and du = u̇dx. The curves thus

depend on two parameters (e.g., the constants of integration) and form a

two-parameter family.

Let us assume that we know a group whose infinitesimal coefficients are ξ and η

and that leaves the system invariant (once it has been extended). The

transformations of the group carry each of the curves of the two-parameter family

to another curve of the family.
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Lie’s reduction theorem

The invariant surfaces form a one-parameter family

φ(x, y, u, c) = 0

with c a parameter. The invariance of each surface of this family implies that

φ(x′, y′, u′, c′) = φ(X(x, y;λ), Y (x, y;λ), U(x, y, u;λ), c) = 0

Upon differentiation with respect to λ, we get

ξφx + ηφy + ηyφu = 0⇔ dx

ξ(x, y)
=

dy

η(x, y)
=

du

η1(x, y, u)

If p(x, y) and q(x, y, u) are two integrals of the characteristic equations, then the

solution is an arbitrary function G of p and q

G(p, q, c) = 0
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Lie’s reduction theorem

The function p is a group invariant while q is an invariant of the once-extended

group, called the first-differential invariant. Lie’s reduction theorem states that if we

adopt p and q as new variables, then the second-order differential equation

w(x, y, ẏ, ÿ) = 0 reduces to a first-order differential equation in p and q. The latter

is called the associated differential equation.

my header

Similarity and Transport Phenomena in Fluid Dynamics 7
o



Example: Emden-Fowler equation

The Emden-Fowler equation

ÿ + 2
ẏ

x
+ yn = 0

arises in astrophysics. We assume that n 6= 1. It is a particular case of the

Thomas–Fermi equation in quantum mechanics. This equation is invariant to the

twice-extended stretching group

x′ = λx

y′ = λβy

ẏ′ = λβ−1ẏ

ÿ′ = λβ−2ÿ
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Example: Emden-Fowler equation

Substitution into the Emden-Fowler equation gives β = 2/(1− n). An invariant p

and a first differential invariant q are thus

p =
y

xβ
and q =

ẏ

xβ−1

Note that this choice is not unique: any combination of p and q is also a first

differential invariant. Let us now calculate the derivatives
dp

dx
=
ẏ

xβ
− β y

xβ+1
=
q − βp
x

and
dq

dx
=

ÿ

xβ−1
− (β − 1)

ẏ

xβ
= −(β + 1)q + pβ−2/β

x
The derivative ratio is

dq

dp
= −(β + 1)q + pβ−2/β

q − βp
So we have transformed a second-order ODE into a first-order ODE.
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Example: Emden-Fowler equation

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

p

q

Example of phase portrait for β = −1/2
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Example: Emden-Fowler equation

The associated differential equation can be cast in the form
dq

dp
=
f (p, q)

q − βp
Two curves (nullclines) emerge:

• the locus f (p, q) = 0 where q(p) admits a zero derivative (tangent horizontal)

• the locus q − βp = 0 where q(p) admits an infinity derivative (tangent vertical)

Two singular points P that are intersections of these curves:

•origin P = O: trivial solution p = q = 0

•point P (let us call it Q): asymptotic solution y = Axβ (check this).
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Example: Emden-Fowler equation

The behaviour of the singular point P (rP vP ) is evaluated by linearizing the

equations near P:

x
dq

dx
= f (p, q) = 0 + (p− pP )∂pf + (q − qP )∂qf + o(p, q)

x
dp

dx
= (q − qP )− β(p− pP ).

We seek solutions in the form p = pP + Peλx et q = qP + Qeλx, then λ is an

eigenvalue of: [
−β 1

∂pf ∂qf

]
and so we get

λ =
∂qf − β

2
±
√

(β + ∂qf )2 + 4∂pf

2
.
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Example: Emden-Fowler equation

Reminder

• If the two eigenvalues are real and of same sign, then the point is a node

• If the two eigenvalues are real and of opposite sign, then the point is a saddle point

• If the two eigenvalues are imaginary, then the point is a focal point

Here for β = −1/2, we have pP = (−β(1 + β))β/(β2−β−2)) = 1/42/5.[
−β 1

∂pf ∂qf

]
=

[
1/2 1

−7/8−1/2

]
The two eigenvalues are imaginary, so Q is a focal point (solutions wrap around Q,

so no asymptotic behaviour!). The same exercise for O shows it is associated with

two real eigenvalues of opposite sign: O is a saddle point.
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Example: Emden-Fowler equation

What is the asymptotic behaviour of the solution near P=O? The eigenvectors are

e1 = (1, 0) et e2 = (1,−1), i.e. the slope of the solution is m = 0 or m = −1

(Making use of the L’Hospital rule leads to the same result. Check it). There are

two possibilities here: m = 0 or m = −1. To leading order, we have

q − qP = m(p− PP )

and since xdp/dx = q − βp, we deduce
dx

x
=

dp

(m− β)(p− pP )
,

and upon integration

x ≈ (p− pp)1/(m−β),

or equivalently y(x) ≈
(
pp + xm−β

)
xβ.
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Example: Emden-Fowler equation

We infer that if m > β then x tends to infinity when p→ pP . On the opposite, if

m < β then x tends to 0 when p→ pP . We know that y takes finite values. We

must have m = 0 as x→ 0. When x→∞ then m→ −1: y(x) ∝ xm ≈ x−1. In

the (p, q) plane, the solution is one of the curves plotted clockwise (starting from O

and returning to O).

Remark. When β = −1/2 (n = 5), the associated differential equation gives

dq

dp
=
f (p, q)

q − βp
⇒ q2 + qp +

4

9
p9/2 = a,

with a a constant of integration. The original second-order ODE is equivalent to

ÿ + 2
ẏ

x
+ y5 = 0⇔

(
ẏ

x−3/2

)2

+
ẏ

x−3/2

y

x−1/2
+

4

9

y9/2

x−9/4
= a

my header

Similarity and Transport Phenomena in Fluid Dynamics 15
o



Example: Emden-Fowler equation

Reminder: (see Chap. 4, Theorems 2 and 3). If we have X(x, y;λ) = λx (the

transformation of x is a stretching) then ξ = x. We can satisfy theorem 2 by

setting F = x. For groups in which the transformation of x is a stretching,

introducing a group invariant as new variable in place of y and keeping x leads to a

new ODE that is separable.

An invariant of the stretching group satisfies

ξGx + ηGy = 0 with ξ = x with η = βy

Here the characteristic equations are
dx

x
= −2

dy

y
=

dG

0

Any function of s = y2x is a group invariant.
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Example: Emden-Fowler equation

So we change the change of variable (x, y)→ (x, s = y2x).

4

9
y4
√
y
√
x + yẏ + xẏ2⇒ −s +

16

9
s−9/4 + x2ṡ

2

s
= 0

that can be put in the separable form
dx

x
=

ds√
s− 16

9
s9/4

which can be integrated (e.g., with Mathematica).
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Stretching groups: asymptotic behaviour

Let us assume that the ODE w(x, y, ẏ, ÿ) is invariant to the stretching group

x′ = λx and y′ = λβy,

with β a constant. The infinitesimal coefficients are

ξ = x, η = βy, η1 = (β − 1)ẏ and η2 = (β − 2)ÿ

The most general differential invariant to this group is a function φ of the three

integrals of the characteristic equations
dx

x
=

dy

βy
=

dẏ

(β − 1)ẏ
=

dÿ

(β − 2)ÿ
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Stretching groups: asymptotic behaviour

The functions y/xβ, ẏ/xβ−1, and ÿ/xβ−2 are three such integrals, and thus

φ(y/xβ, ẏ/xβ−1, ÿ/xβ−2) = 0

A power-law function y = Axβ satisfies this equation. We therefore deduce that A

is solution to the algebraic equation

φ(A, (β − 1)A, (β − 2)A) = 0

One of the solutions gives the asymptotic behaviour of y.
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Exercise 1: Thomas-Fermi equation

1. Consider the differential equation

d2y

dx2
=
y3/2

√
x
,

subject to y(0) = 1 and y(∞) = 1. (a) Show that this ODE is invariant to a

stretching group. (b) By making use of the change of variables (x, y)→ (p, q),

determine the associated differential equation and plot the phase portrait. (c)

Determine the asymptotic solution to this ODE. (d) How it is represented in the

phase portrait. (e) How can you solve the associated differential equation

numerically?
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Determining equations

Let us consider the ODE

ÿ = ω(x, y, ẏ, )

and the twice-extended infinitesimal operator

Γ(2) = ξ∂x + η∂y + η1∂ẏ + η2∂ÿ

with

η1 = ηx + ηyẏ − ẏ(ξx + ξyẏ) = ηx + (ηy − ξx)ẏ − ξyẏ2,

η2 = dη1/dx−ÿdξ/dx = ηxx+(2ηxy−ξxx)ẏ+(ηyy−2ξxy)ẏ
2−ξyyẏ3+(ηy−2ξx−3ξyẏ)ÿ.

This operator leaves the ODE invariant provided that

Γ(2)(ÿ − ω) = 0
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Determining equations

The twice-extended infinitesimal operator can be expressed as

Γ(2) =ξ∂x + η∂y +
(
ηx + (ηy − ξx)ẏ − ξyẏ2

)
∂ẏ+(

ηxx + (2ηxy − ξxx)ẏ + (ηyy − 2ξxy)ẏ
2 − ξyyẏ3 + (ηy − 2ξx − 3ξyẏ)ÿ

)
∂ÿ.

The condition Γ(2)(ÿ − ω) = 0 yields the equation

ηxx + (2ηxy − ξxx)ẏ + (ηyy − 2ξxy)ẏ
2 − ξyyẏ3 + (ηy − 2ξx − 3ξyẏ)ω =

ξωx + ηωy + (ηx + (ηy − ξx)ẏ − ξyẏ2)ωẏ.

# x, y, ẏ, et ÿ are considered independent variables. Albeit looking complex, the

equation is simple than the original ODE: it is linear and it involves independent

infinitesimal coefficients providing the determining equations.
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Determining equations

For instance, let us consider the ODE

ÿ = 0

Thus we have w(w, y, ẏ) = 0). We deduce

ηxx + (2ηxy − ξxx)ẏ + (ηyy − 2ξxy)ẏ
2 − ξyyẏ3 = 0.

As ξ and η are independent de ẏ, this equation transforms into a system of

equations :

ηxx = 0, 2ηxy = ξxx, ηyy = 2ξxy, and ξyy = 0.
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Determining equations

η = A(x)y + B(x), ξ = A(x)ẏ2 + C(x)y + D(x), where A, B, C, D are arbitrary

functions. Finally we obtain:

ξ = c1 + c3x + c5y + c7x
2 + c8xy,

η = c2 + c4y + c6x + c7xy + c8y
2,

with ci constants.

Tiresome task! There are packages that can find the determining equations and do

the work, e.g. with Mathematica

http://web.stanford.edu/∼cantwell/SymmetryAnalysisSoftware/
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Homework: superfluid helium

Gorter-Mellink’s law predict that for low-temperature helium,

heat flux is related to temperature gradient by q3 = −k3∇T .

There are similarity solutions to the resulting nonlinear diffusion.

The principal differential equation is given by

4
d2y

dx2
+ 9x

(
dy

dx

)5/3

= 0

Solve the equation subject to y(0) = cst > 0 and y(∞) = 0.

Hint: find the groups that leave the ODE invariant. (Note: the

notation is awkward as we calculate ẏ5/3 with ẏ < 0; here assume

that (−1)5/3 = −1).
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