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Stretching groups

Let us consider a partial differential equation in the form

f

(
∂c

∂t
,
∂c

∂x
, . . .

)
= 0.

We study the existence and properties of similarity solutions. Not all

solutions to PDEs are similarity solutions, PDEs do not always have similar

solutions, but when they exist, they shed light on the behaviour of more

general solutions. We consider the one-parameter stretching group

x′ = λx, t′ = λβt, and c′ = λαc

with λ the group parameters, and α and β the family parameters of the

group that label different groups of the family. The values of α and β are

usually fixed by the initial and boundary conditions.
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Stretching groups: similarity solutions

The solution to the PDE is a surface in the (x, t, c) space. Its general

equation is

F (x, t, c) = 0

The equation is invariant to the stretching group

F (λx, λβt, λαc) = 0

Differentiating it with respect to λ, then setting λ = 1 leads to

xFx + βtFt + αcFc = 0

whose characteristic form is
dx

x
=

dt

βt
=

dc

αc
=

dF

0
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Stretching groups: similarity solutions

Three integrals of this equation are

ζ =
x

t1/β
, f =

c

tα/β
and F

The most general solution is F = F(ζ, f ) where F is an arbitrary

function. Since F = 0, we obtain an explicit solution in the form

c = tα/βf (ζ) with ζ =
x

t1/β

When this form is substituted into the PDE, an ODE results. This ODE

(called the principal equation) is usually simpler to solve than the original

PDE.
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Asymptotic behaviour of similarity solutions

If the initial and boundary conditions impose that Mα +Nβ = L (with

M , N , and L constants), then the ODE is invariant to the associated

stretching group

ζ ′ = λζ and f ′ = λL/Mf

If L/M < 0, then the principal equation admits an asymptotic solution

f = AζL/M . The value of A is found by substituting this form into the

PDE.

(Note: usually in fluid mechanics, but not always, we are looking for

solutions that represent spreading of a material/quantity, this is why we

are interested in L/M < 0.)
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Exercises 1 and 2

1. Consider the linear diffusion equation:

∂c

∂t
= D

∂2c

∂x2

with D the diffusivity. Mass conservation implies that
∫
R c(x, t)dx = c0.

Show that this PDE is invariant to a stretching group. Solve the problem.

2. Consider the same linear diffusion equation subject to the boundary

conditions c(0, t) = sin(ωt). Does the problem admit a similarity solution?
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Exercise 3: the dam-break problem

3. Consider the shallow water equations:

∂th + ∂x(uh) = 0,

∂tu + u∂xu + g∂xh = 0,

subject to
for u, −∞ < x <∞ u(x, 0) = 0

for h, x > 0 h(x, 0) = h0

x < 0 h(x, 0) = 0
Show that these PDEs admit a similarity solution and determine this

solution.

Ritter, A., Die Fortpflanzung der Wasserwellen, Zeitschrift des Vereines Deutscher Ingenieure, 36 (33), 947-954, 1892.
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Exercise 4: unsteady impulsive flows

4. We address the Stokes’ first problem (also called Rayleigh problem).

Consider an incompressible Newtonian fluid bounded by an upper solid

boundary. At t = 0, the plate is suddenly and instantaneously set into

motion. Its velocity is U(t) = Atα with A a constant and α > 0. The

fluid velocity adjusts to this change in the boundary condition. Write the

Navier-Stokes equations and the boundary conditions. Reduce the

equations and determine their type (hyperbolic, parabolic, elliptic). Seek

similarity solutions.

Drazin, P.G., and N. Riley, The Navier-Stokes Equations: A classification of Flows and Exact Solutions, Cambridge University Press, Cambridge, 2006.
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Exercise 5: round jet

5. We consider a steady turbulent round jet. There is a dominant flow

direction z, and the flow spreads gradually in the r direction. The axial

gradients are assumed small compared with lateral gradients. These

features allow boundary-layer equations to be used in place of the

Reynolds equation (even in the absence of a boundary).

Pope, S.B., Turbulent Flows, 771 pp., Cambridge University Press, Cambridge, 2000.
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Exercise 5: round jet

We use a simple closure equation for the velocity cross-correlation

〈u′v′〉 = −νt
∂〈u〉
∂z

with νt ∼ 0.028. The momentum balance equation reduces to

〈u〉∂〈u〉
∂z

+ 〈v〉∂〈u〉
∂r

=
νt
r

∂

∂r

(
r
∂〈u〉
∂r

)
subject to the boundary conditions u = v = 0 along the z-axis and

u = v = 0 in the limit r →∞. Introduce the stream function ψ

(〈u〉 = r−1ψr and 〈v〉 = −r−1ψz). Find a similarity solution to the

momentum balance equation.
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Exercise 6: front propagation in viscoplastic fluids

6. Let us consider a viscoplastic material. In time-dependent simple-shear

flow, the momentum balance equation reduces to

%
∂u

∂t
=

∂

∂z
(µ(γ̇)γ̇) with γ̇ =

∂u

∂z
where µ is the bulk viscosity given by Carreau’s model

µ(γ̇) = µ∞ +
µ0 − µ∞

(1 + (γ/γc)2)(1−n)/2

with n the shear-thinning/thickening index, µ∞ viscosity in the high

shear-rate limit, µ0 viscosity in low high shear-rate limit, and γ̇c a constant.

Duffy, B.R., D. Pritchard, and S.K. Wilson, The shear-driven Rayleigh problem for generalised Newtonian fluids, J. Non-Newt. Fluid Mech., 206, 11-17, 2014.
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Exercise 6: front propagation in viscoplastic fluids

The nonlinear diffusion equation is subject to the boundary condition

τ = µγ̇ = τ0 at z = 0 and u→ 0 when z → −∞
Show that the equation is invariant to a similarity group. Under which

conditions, is there a front propagating downward? Hint: Show that

u = taf (ξ) with ξ the similarity variable to be determined. Then consider

two possible behaviours for f : (i) a boundary-layer approximation

f ∼ A(ξ − ξf)k when ξ → ξ+f (ξf front position), (ii) algebraic decay in

the far field f ∼ B(−ξ)p when ξ → −∞.
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Exercise 7: propagation of a gravity current

Rottman, J.W., and J.E. Simpson, Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel, J. Fluid Mech., 135, 95-110, 1983.

Gratton, J., and C. Vigo, Self-similar gravity currents with variable inflow revisited: plane currents, J. Fluid Mech., 258, 77-104, 1994.

7. Consider the shallow equations for a gravity current

propagating over a horizontal boundary
∂h

∂t
+
∂hu

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ g′

∂h

∂x
= 0.

with g′ = g(%− %a)/% the reduced gravity constant, %a

the ambient fluid’s density.
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Exercise 7: propagation of a gravity current

The gravity is supplied from a source located at x = 0, with an inflow rate

Q(t) = uh|x=0 = αqtα−1,

with α ≥ 0. The Froude number at the source is fixed

Fr|x=0 =
u0√
g′h0

F0,

with F0 a constant. The front takes the form of a blunt nose (shock), with

a Benjamin-like condition that related the flow depth to the front velocity

ẋ2f = β2ghf ,

Show that the governing equations are invariant to a stretching group.

How to study the phase portrait?
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Exercise 8: nonlinear diffusion equation

Grundy, R.E., Similarity solutions of the

nonlinear diffusion equation, Quarterly of Applied Mathematics, 79, 259-280, 1979.

8. Consider the nonlinear diffusion equation
∂h(x, t)

∂t
=

∂

∂x

(
hn
∂h(x, t)

∂x

)
with the auxiliary equation (mass conservation)

M =

∫ xf(t)

0

h(x, t)dx = A,

and

h(xf , t) = 0

at the front xf . Study the phase portrait and deduce

the late-time behaviour.
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Exercise 9: heat diffusion in a cylindrical geometry

9. In industry, coaxial cylinder viscometers are used to

determine the rheological properties of fluid samples.

Let us imagine that you need to study the thermal

coupling by applying a constant heat flux Q at the inner

cylinder r = R. What is the resulting temperature at

this surface? To simplify the problem we assume that

the gap is very large (the outer cylinder is placed at

infinity). The governing equation is the heat equation

∂T

∂t
=
D

r

∂

∂r

(
r
∂T

∂r

)
with D the diffusivity.
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Exercise 9: heat diffusion in a cylindrical geometry

The boundary conditions are
∂T

∂r
(R, t) = −Q and T (∞, r) = 0

and the initial condition is

T (r, 0) = 0
•Show that the PDE is invariant to a stretching group.

•What is the problem with the boundary conditions?

•Seek an approximate solution at short times by considering that the heat has not

diffused very far.

•Seek an approximate solution at long times by assuming that the heat has spread

very far from r = R and so we can take R = 0.
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Homework: problem statement
x

x

h0

x = �

Initially, the fluid is contained in a

reservoir.

Huppert, H.E., The propagation

two-dimensional and axisymmetric viscous gravity currents

Journal of Fluid Mechanics, 121, 43-58, 1982.

Solve Huppert’s equation, which describes fluid motion

over a horizontal plane in the low Reynolds-number

limit:
∂h

∂t
− ρg

3µ

∂

∂x

(
h3
∂h

∂x

)
= 0.

The solution must also satisfy the mass conservation

equation ∫
h(x, t)dx = V0

where V0 is the initial volume V0 = `h0. Calculate the

front position with time and show that it varies as t1/5.

Solve the equation numerically and compare with the

analytical solution.
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Homework: using pdepe inMatlab

Hint: Show that the PDE is invariant to a stretching group. Solve the

principal equation. Use the Matlab built-in function pdepe to solve the

equation numerically. You can also use an implicit scheme, e.g.

Crank-Nicolson. (Scripts on the website).

volume = 0.1;

temps = [0:0.1:1 2:0.5:20 21:5:40 40:10:100 200:100:1000];

[x,t,h] = newton(0.1,10,2500,temps);

figure

for i = 1:length(t)

hold on

plot (x,h(i,:))

end

hold off
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Homework: using pdepe inMatlab
function [x,t,h] = newton(hg,xmax,nPoints,t)

m = 0; xmin=0;

x = linspace(xmin,xmax,nPoints);

options = odeset(’InitialStep’,1e-12);

sol =

pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t,options,hg);

h = sol(:,:,1);

function [c,f,s] = pdex1pde(x,t,h,DhDx,hg)

c = 1; f = hˆ 3 DhDx ; s = 0;

function h0 = pdex1ic(x,hg)

d=0.05;

for i = 1:length(x)

y = x;

if y(i) <= -d/2

h0(i) = 1;

elseif y(i) > -d/2 & y(i) < d/2

h0(i) = ((cos((y(i)-(-d/2))*2*pi/(2*d)))/2+0.5);

else

h0(i) = 0;

end

end

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t,hg)

pl = ul-1; ql = 0;

pr = ur; qr = 0;
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Homework: using a Crank-Nicolson scheme

In implicit schemes, the spatial derivative is discretized at time t = kδ and

t = (k + 1)δ

∂2h

∂x2
=

r

δx2
(hk+1i+1 + hk+1i−1 − 2hk+1i ) +

1− r
δx2

(hki+1 + hki−1 − 2hki ) + o(δx2)

Taking r = 0.5 gives the Crank-Nicolson (or Adams-Moulton) scheme.

The scheme is unconditionally stable. For nonlinear diffusion terms, we

write
∂

∂x

(
f (h)

∂h

∂x

)
=

r

δx2

(
fk+1i+1/2(h

k+1
i+1 − hk+1i )− fk+1i−1/2(h

k+1
i − hk+1i−1 )

)
+

1− r
δx2

(
fki+1/2(h

k
i+1 − hki )− fki−1/2(h

k
i − hki−1)

)
with fk+1i+1/2 = (fk+1i+1 + fk+1i )/2
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