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Translation groups

Translation groups take the form

t′ = t + λ, x′ = x + αλ and c′ = c

with λ the group parameter and α a family parameter. Solutions that are invariant

to a translation group are called travelling-wave solutions as physically they can be

interpreted as propagating waves.

The focus of this chapter is on the one-dimensional diffusion equation with a source

term
∂c

∂t
= D

∂2c

∂x2
+Q(c)

with D the diffusivity and Q the source term.
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Translation groups: general solution

A solution that is invariant to a translation group satisfies

c(x + αλ, t + λ) = c(x, t)

If we differentiate this equation with respect to λ and set λ = 0, we obtain
∂c

∂t
+ α

∂c

∂x
= 0

whose characteristic equations are
dx

α
=

dt

1
=

dc

0
The two independent integrals are ζ = x− αt and c. The most general solution is

thus c = C(ζ).
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Example: linear diffusion with source

Let us consider the linear diffusion equation

∂c

∂t
= D

∂2c

∂x2
+Q(c)

It is invariant to translation groups. Making the change of variable c = C(ζ) with

ζ = x− αt, we obtain the principal differential equation

DC̈ + αĊ +Q(C) = 0

Note that this equation is also invariant to the (associated) translation group

(ζ, C)→ (ζ ′, C ′) = (ζ + µ,C). So u = Ċ is a first differential invariant. We can

transform the principal differential equation into a first-order ODE

u = Ċ and u̇ = C̈ = −α
D
Ċ − Q(C)

D
⇒ du

dC
= −α

D
− Q(C)

Du
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Example: determination of the propagation velocity

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

γ=2

Function Q for γ = 2 and D = 1: Note that

there are 3 roots: c = 0, c = 1, and c = γ.

We will mainly work in the fourth quadrant

(the solution is expected to satisfy u ≤ 0,

u(0) = u(γ) = 0)

Solutions in the form c = C(x− αt) represent

wave propagation, with α the velocity at

which the travelling wave propagates in the x

direction. Let us now consider a particular

case in which the source terms takes the

following form (heat diffusion in

superconductors cooled with liquid helium)

Q(c) = −c for 0 ≤ c < 1

Q(c) = γ − c for 1 ≤ c

with γ > 1 a constant.
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Exercises 1 to 3

Exercise 1. Show that the first and third roots are stable against small perturbations

whereas the second is unstable.

Exercise 2. Plot the phase portrait. Determine the qualitative behaviour of the

solutions close to the critical points.

Exercise 3. What are the steady states of the system?
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Example: determination of the propagation velocity
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P γ=2R0

Phase portrait for a = 1, D = 1 and γ = 2

We now calculate the separatrix connecting O

to P.

Let us consider the case C < 1, then
du

dC
= −α− C

u
(with D = 1) whose solution satisfying

u(0) = 0 is

u = −κ+C
where κ+ is the positive root of κ2 − ακ = 1.
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Example: determination of the propagation velocity
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When γ > C > 1, then the principal

differential equation is
du

dC
= −α− γ − C

u
whose solution satisfying u(γ) = 0 is

u = −κ−(C − γ)
Problem? The sepatrix should be unique and

go from one singular point to the other. As Q

is piecewise continuous, u̇ is discontinuous at

C = 1.
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Example: determination of the propagation velocity
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Phase portrait for γ = 2, so for α = 0

The only possibility is to impose the crossing

of the two sepatrices at C = 1. Therefore

−κ−(1− γ) = −κ+⇒ α =
γ − 2√
γ − 1

For γ = 2, α = 0 (no motion)
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Example: determination of the propagation velocity
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Phase portrait for γ = 5, so for α = 3
2

The solution is obtained by integrating

ċ = −κ+u for c < 1 and ċ = −κ−(c− γ) for

c < 1. We find

c = 5 + exp(−t/2)a for c > 1

c = exp(−2t)b for c > 1

where a and b are two constants of

integration. Assuming that c(0) = 1, then

a = 4 and b = 1.
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Example: determination of the propagation velocity
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Profile c(ζ) with ζ = x− αt for γ = 5, so for α = 3
2

The solution connects two steady

states located at ±∞ (corresponding

to Q(c) = 0.

Note the absence of propagation

front.
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