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GChapter 8: Hyperholic partial differential equations

e Hyperbolic problems
e One-dimensional problems
e Characteristic equation
e Shock formation
e [he Riemann problem
e Generalization to multidimensional problems
e Linear systems
e Nonlinear systems

e Shallow-water equations
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Hyperbolic problems =PrL

Hyperbolic problems arise frequently in fluid mechanics (and continuum mechanics).
For instance, in hydraulic engineering:
Dimension 1: nonlinear convection equation, for example the kinematic wave

equation, which describes flood propagation in rivers
Oh Oh°'3
- KV

= ()
Ot 0x ’
with h flow depth, K Manning-Strickler coefficient, et ¢ bed gradient;

Dimension 2: Saint-Venant equations (also called the shallow water equations)

oh 8ha__0
ot Or
aal_@_ g eah T
57 uax—gsm g COS o ol

with @ flow-depth averaged velocity, h flow depth, 6 bed slope, 7, bottom shear
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Hyperbolic problems =PrL

Dimension 3: Saint-Venant equations with advection of pollutant

oh 8Im_0

g aax o oh

u _du Tp
57 033 gsinf — gCOSQ@a: oh
op 9% _

Ot I Yor

with ¢ pollutant concentration.

All these equations are evolution problems of the form

of B
S AUf)-VE = S(f)

with f the dependant function, S the source term (possibly a differential operator,

e.g. diffusion), A a matrix.
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Hyperbolic problems =PrL

Hyperbolic problems share a number of properties
e they describe systems in which information spreads at finite velocity

e this information can be conserved (when the source term is zero) or altered

(nonzero source term)
e solutions can be discontinuous

e smooth boundary and initial conditions can give rise to discontinuous solutions

after a finite time
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Characteristic equation for one-dimensional problems = P =

Let us first consider the following advection equation with n = 1 space variable and

without source term:
Owu(z, t)+ a(u)du(x, t) =0,
subject to one boundary condition of the form:
u(x, 0) =wug(x) att = 0.
Note the this PDE is equivalent to
Owu(x, t)+ 0. flu(x, 1) =0,

with a = f’(u) when f is C'' continuous.
A characteristic curve is a curve x = x.(t) along which the partial differential

equation 0tU + a0,U = 0 is equivalent to an ordinary differential equation.
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Characteristic equation =Pr-L

Consider a solution u(x, t) of the differential

system. Along the curve C of equation
r = x.(t) we have: u(x, t) = u(x.(t), t) and
the rate change is:
du(zc(t), t) Ou(x, t) dr.du(z, t)
¢ ot At Oz

Suppose now that the curve C satisfies the

equation dx./dt = a(u) :
du(z, t) Ou(x, t)
dt ot

I CL@U(:):, t) 0

Ox

Characteristic curves
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Characteristic equation =Pr-L

Any convection equation can be cast in a characteristic form:

0 0 B du(x, t) . dr
&u(x, t) + a(u)%u(x, t) =0« = 0 along straight lines C: = a(u).

Since du(x, t)/dt = 0 along x.(t), this means that u(x, t) is conserved along this

curve. Since u is constant a(u) is also constant, so the curves C are straight lines.
This holds true for linear and nonlinear systems.
If the source term is non zero, this does not change the final equation (except for

the right-hand term), but u is no longer conserved.
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Characteristic equation =Pr-L

When this equation is subject to an initial condition, the characteristic equation can

be easily solved. As u is constant along the characteristic line, we get
dx

dt
with the initial condition ¢y = 0, u(x, t) = ug(x). We then infer

— a(u) — T — Ty = a(u)(t _ tO)?

r — xy = alug(zg))t
is the equation for the (straight) characteristic line emanating from point ;.

Furthermore, t > 0 u(x, t) = uy(xy) since u is conserved. Since we have:

ro = x — a(uy(xp))t, we then deduce:

u(x, t) = ug(x — alug(xy))t).

Similarity and Transport Phenomena in Fluid Dynamics 9



Shock formation =PrL

Consider the convective nonlinear equation:

0 0

au(xv t) | (%ﬂu(x’ t)] = 0,

with initial condition u(z, 0) = ug(z) and f a given function of u. This equation

can be solved simply by the method of characteristics.

d d
au = () along curves = — )\(U)a

dt dt

where \(u) = f'(u). We deduce that u is constant along the characteristic curves.
So dx/dt = A(u) = ¢, with ¢ a constant that can be determined using the initial
condition: the characteristics are straight lines with slopes A\(uy(x()) depending on
the initial condition:

T = x9+ M up(z))t.
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Shock formation =PrL

Since wu is constant along a characteristic curve, we find:

u(x, t) = up(xy) = uy (x — AMug(xp))t)
The characteristic lines can intersect in some cases,

tp especially when the characteristic velocity decreases:

’ N(u) < 0. What happens then? When two

. characteristic curves intersect, this means that

Characteristic curves and shock potentially, u takes two different values, which is not

£ rmation possible for a continuous solution. The solution

becomes discontinuous: a shock is formed.
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Shock formation =PrL

When two characteristic curves interest, the differential u, becomes infinite (since u

takes two values at the same time). We can write u, as follows
0x 1 ug (o)
o (e N _ 0
e = U0l0) g = N GVt 1+ D)t

0x
where we used the relation: X' (ug(zg))u'(zg) = 0, 0, u = O, A. The differential u,

tends to infinity when the denominator tends to 0, i.e. at time: £, = —1/\(xy). At
the crossing point, u changes its value very fast: a shock is formed. The s = s(t)
line in the x — t plane is the shock locus. A necessary condition for shock

occurrence is then t;, > 0:

)\,(CEQ> < 0.

Therefore there is a slower speed characteristic.
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Shock formation
U |
!
-
|
\J
T
T =S

Shock position

=PrL

The characteristic curves that are causing the shock

form an envelope curve whose implicit equation is given
by:

r = o+ )\(UQ(ZCo))t et )\/<UO<CCQ>> +1=0.
After the shock, the solution is multivalued, which is
impossible from a physical standpoint. The multivalued

part of the curve is then replaced with a discontinuity

positioned so that the lobes of both sides are of equal

dr€a.
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=PrL

Generally, we do not attempt to calculate the envelope of characteristic curves,

because there is a much simpler method to calculate the trajectory of the shock.

Indeed, the original PDE can be cast in the integral form:

d [*F
dt /., u(z, t)dr = flu(zy, 1)) — (u(zg, 1)),

where x; and xp are abscissa of fixed point of a control volume. If the solution

admits a discontinuity in x = s(¢) on the interval |z}, x|, then

d LR d S LR

E/ﬂ u(x, t)dr = = (/IL u(x, t)dx +/S u(x, t)dx) ,
That is:

g 9 g . .
& . U(Zl?, t)dZIZ’ — \/;L &u(mv t)dw ‘|_/S &u(:ﬁv t)dl‘ T SU(.CIZL,t) o SU(CER,t).
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Taking the limit xp — s and x; — s, we deduce:

Sty = 1f (w1,
where

w=u"—u = lim w— lim u,
T—>S,T>8 T—>8,T<S

The 4+ and — signs are used to describe what is happening on the right and left,

respectively, of the discontinuity at x = s(t).

In conclusion, we must have on both sides of x = s(%):

stup = f (u))
This is the Rankine-Hugoniot equation.
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Riemann problem for the linear case

=PrL

We call Riemann problem an initial-value

problem of the following form:
Oru + ax[f(u)] = 0,

ur itz <0,

up if x>0,
with u; et up two constants.

u(x, 0) = up(x) =

This problem describes how an initially
piecewise constant function u, with a
discontinuity in £ = 0 changes over time. This

problem is fundamental to solving theoretical

and numerical problems.
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Riemann problem for the linear case

=P

Let us consider the linear case f(u) = au,
with a a constant. The solution is

straightforward:

u(x, t) = up(x — at) =

ur itz —at <0,

up 1If x —at > 0.

The discontinuity propagates with a speed a.

Similarity and Transport Phenomena in Fluid Dynamics
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Riemann problem: nonlinear case =PrL

In the general case (where f” # (), the Riemann problem is an initial-value problem
of the following form:

Owu + 0y f(u)] =0,
ulz, 0) = up(a) =4 Y

up it x > 0.

with u7, and up two constants. Assume that f” > 0 (the case of a non-convex flow
will not be treated here). We will show that there are two possible solutions:
e a solution called rarefaction wave (or simple wave), which is continuous;

e a discontinuous solution which represents the spread of the initial discontinuity

(shock).
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Riemann problem: nonlinear case =PrL

Rarefaction wave. The PDE is invariant under the transformation x — Ax and
t — At. A general solution can be sought in the form U(&) with £ = x /1.
Substituting this general form into the partial differential equation, we obtain an

ordinary differential equation of the form:

(f(UE) = U =0.
There are two types of solution to this equation:
e rarefaction wave: (f'(U(&)) — &) =0. If f >0, then f'(ug) > f'(ur) ; equation
f'(U) = £ admits a single solution when f'(ug) > & > f'(ur). In this case, uy, is
connected to up through a rarefaction wave: £ = f/(U(£)). Inverting f', we find

out the desired solution

u(z, t) = fU(E)
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Riemann problem: nonlinear case =PrL

e constant state: U'(£) = 0. This is the trivial solution u(x, t) = cst. This solution

does not satisfy the initial problem.

The solution is thus a rarefaction wave. |t reads

ur, 1t ? S f’(uL),
ulw, 1) = FE s fur) < T < fug)
Upr 1f % > f’(uR).
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Riemann problem: nonlinear case =PrL

Shock wave
Weak solutions (discontinuous) to the hyperbolic differential equation may exist.
Assuming a discontinuity along a line x = s(t) = st, we get: [f(u)] = sju;. The

solution is then:
ur it x < st,
u(x, t) = { -

up it x > st.

Then a shock wave forms, with its velocity s given by:

flur) — f(ug)

uy — uUR

Similarity and Transport Phenomena in Fluid Dynamics 21



Riemann problem: nonlinear case =PrL

Selection of the physical solution

Two cases are to be considered (remember that f” > 0). We call A\(u) = f'(u) the

characteristic velocity (see section below), which is the slope of the characteristic

curve (straight line) of the problem.

e Ist case: up > uy. Since f” > 0, then A(ug) > A(ur). At initial time £ = 0, the
characteristic lines form a fan. Equation £ = f'(U(£)) admits a solution over the
interval A(ugr) > & > Auyg);

e 2nd case: up < uy. Characteristic lines intersect as of ¢ = 0. The shock
propagates at rate A(ugr) < s < A(uy). This last condition is called Lax condition;

it allows to determining whether the shock velocity is physically admissible.
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Riemann problem: nonlinear case =PrL
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Riemann problem: nonlinear case =PrL

Non-convex flux
For some applications, the flux is not convex. An example is given by the equation
of Buckley-Leverett, reflecting changes in water concentration ¢ in a pressure-driven

flow of oil in a porous medium:

o f(¢)£lf = 0,
with f(¢) = ¢*(¢° + a(l — ¢)*)"! and a a parameter (0 < a < 1). This fonction

has an inflexion point. Contrary to the convex case, for which the solution involves

shock and rarefaction waves, the solution is here made up of shocks and compound
wave resulting from the superimposition of one shock wave and one rarefaction

wdaVe.
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Exercise 1

—

T =0

Solve Huppert's equation, which describes fluid motion over an inclined plane in the low

Reynolds-number limit:
Oh  pgh?sin 00h
| = ()
ot i Oox

The solution must also satisfy the mass conservation equation

/ Wz, t)dz =V,

where V' is the initial volume V[ = Zh
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Generalization to higher dimensions: terminology =P =L

Terminology

We study evolution equations in the form:
U,+AU)U,+ B =0,

with A an n X n matrix. B is a vector of dimension n called the source. The

system is homogeneous if B = 0. |t is a conservative form when

0
- —F =
Ut 033 (U> 07

with A(U) = 0F /0U.
The eigenvalues \; of A represent the speed(s) at which information propagates.

They are the zeros of the polynomial det(A — A1) = 0. The system is hyperbolic if

A has n real eigenvalues.
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Generalization to higher dimensions: terminology =P =L

If a function satisfies an evolution equation:

Ut =+ [f(u>]x = 0,
then we can create an infinity of equivalent PDEs: |g(u)|; + [h(u)], = 0 provided
that ¢ and h are such that i’ = ¢'f’. As long as the function u(z, t) is
continuously differentiable, there is no problem, but for weak solutions (exhibiting a
discontinuity), then the equations are no longer equivalent. We must use the original

physical equation (usually expressing conservation of mass, momentum or energy).
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=PrL

Take the particular case n = 2 for illustration. The matrix A has two real

Left and right eigenvectors

eigenvalues A\; and \y together with left eigenvectors v and vs:
v,- A= \v,.
It also has two right eigenvectors w; et wo:
A w, = \w;.
Let us assume that A has the following entries
A ab |
cd
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Left and right eigenvectors =PrL

Then we get
1 a—d+ VA | | a+d+ VA
vi=|d—a+VA |, wi= Ve . associated with A\ = ,
| )
2C
_ 1 S ated with ), — 44— VA
Vo= | d—ag—+VA |, W= Qlc , assoclated wi ) = > :
2C

avec A = (a — d)* + 4bc. Note that

v1-w-o =0, and vy - w; = 0.
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Diagonalization =PrL

Linear system: When the eigenvectors are constant
v, -U;+v,- AAUU,+v,- B=0.

thus:
’UZ"Ut—l—)\Z"UZ”Uw—I—’UZ"B:O.

We pose r; = v, - U and obtain
r +A-r,+7r - B=0
where A = diag{\;, A\2}. The system is now made of independent PDEs

dr dx,. 1(t
dtl Fr1- B =0 along x = xcjl(t), d;( ) =\
d dx,. ot
d? 79 - B =0 along x = ZCC?Q(t), xdz( ) = Ao,
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Diagonalization: nonlinear system =Pr-L

Nonlinear system: We seek new variables 7 = {ry, 79} such that:
vy - dU = pidry,
vy - AU = padrs,

where p; are integrating factors such that dr; are exact differential. We have:

(97"1 87‘1
dry = —dU A dUs | = v dU dUs.
pidry = (6’U1 T 2) U1V + V12dU2
ldentifying the various terms leads to:
or _ v
oU, ,ul7
and
or _ v
oUy
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Diagonalization: nonlinear system =Pr-L

By taking the ratio of the two equations above, we get:
(97’1 U111 87“1

@—(]1 ; 0128(]27
The Schwartz theorem states that 0,,f = 0,,f and so from du(z, y) = adz + bdy,

we deduce that J,a = 0,b. Here this gives us the relation
0 U192 B 0 U11

oU, ; GUQM
The integrating factor can also be deduced from 0r,/0U, = 1/111 when the entries

of v, are properly selected such that v;; = 1. Note that

ory vy 0r
— = = ori/0U ori/0U, =0 = - Vri =0
aUl 2}128[]2 W 7“1/ 1 + W99 7“1/ 9 w»- T1

Definition: r; is said to be a 2-invariant of the system.
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Diagonalization: nonlinear system =Pr-L

The characteristic equation associated with the equation above is
dU1 dUQ dTl
_— = — —,
V12 U1 0
which leads to an integral. The first equation of the differential system is equivalent

to: iU
V1 —— V- B = O,
dt |,—x,
where © = X/ (1) satisfies dX;/dt = \. This is the I-characteristic curve:
d?“l
L1 d—t -+ V1 - B = 0.
QZIXl(t)
Similarly for rs:
dr
o d_tQ + Vo - B = 0.
ZE:XQ(t) Similarity and Transport Phenomena in Fluid Dynamics 33




Diagonalization: nonlinear system =Pr-L

In a matrix form:

dr

dt],_x
r=X (t)
along two characteristic curves 7 = X (t) such that dX (¢)/dt = (A, Ao); S is the

source term whose entries are (11;5; = v; - B. The new variables r are called the

+ S(r, B) =0,

Riemann variables. For B = 0, they are constant along the characteristic curves

and thus they are called Riemann invariants.

Similarity and Transport Phenomena in Fluid Dynamics 34



EXercise 2

Consider the Saint-Venant equations:
Oth + 0x(uh) = 0, .
ou + ud,u + 0h =0, .
Determine the Riemann invariants and plot the characteristic curve for the

dam-break problem

— initial velocity —oo < < oo u(x,0) =0

— initial depth = < 0 h(x,0) = hg
v >0 Bz, 0) =0
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The Riemann problem: linear systems =PrL

Consider the following linear hyperbolic problem:

oU oU
A
Ot 0x V)

where A is an n X n matrix with n distinct real eigenvalues. We thus have

A=R-A- R with R the matrix associated with the change of coordinates

(the columns are the right eigenvectors of A) and A a diagonal matrix whose

entries are )\;. Making use of the change of variables W = R™! - U leads to
oW oW

| A. . — O
Ot ox
This is a system of independent linear hyperbolic PDEs: 0,w; + \;0,w; = 0, whose

solution takes the form w; = w;(xz — A\jt).
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The Riemann problem: linear systems =PrL

The inverse change of variables leadstoe U = R- W

U = zn:wz(l', If)’l“z‘,
1=1

where 7; is a right eigenvector A associate to A\; and w; is i1th entry of W. The solution
results from the superimposition of n waves travelling at speed )\;; these waves are
independent, do not change form (this form is given by the initial condition w;(x, 0)r;).
When all but one elementary waves are constant (0,w;(x, 0) = 0), then the resulting

wave is called a j-simple wave

(f
U=wj(x—\t)r;+ Z wi(x, t)r;
i=1, i#]
Information propagates along the j-characteristic curve (all others w; are constant).
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The Riemann probiem: linear systems

The Riemann problem takes the form

oU oU

ot Ox
with
U
Uz, 0) =Uy(z) = {Uﬁ

We now expand U, et U, in the eigenvector basis 7;

FA-— =0,

it © <0,
if x> 0.

U,—= z”: wy)r@- et U, = z”: wy)ri,
1=1 1=1

(7)

(

(£)

with wy = w,;” et w, = w

vectors with constant entries.

Similarity and Transport Phenomena in Fluid Dynamics
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The Riemann problem: linear systems =PrL

The Riemann problem involves n scalar problems

O if < 0
wyorxr < U,
. O){wm >0

The solution to these advection equations is

Wi if 2 — Mt < 0,
wilz, ) =4 (.
w: it x— ANt > 0.

[/

We call I(x, t) the largest index i such that x — A\;t. The solution reads

Zw r2+2w ;.

1=1-+1
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The Riemann problem: linear systems =PrL

Consider the case n = 3. The solution in the
r — t space breaks down into “wedges  where
U is constant and separated by characteristic
curves * = A\;t. At any point M, we can
determine the value taken by U by plotting
the characteristic curves issuing from M

toward the x-axis.
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Exercise 3 =Pr-L

Consider the wave equation

with initial data
u(x,0) = up(x) and uy(x,0) = uy(x)

Solve the equation.
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The Riemann problem: nonlinear systems =PrL

Consider the following linear hyperbolic problem:

oU oU
A
Ot 0x V)

where A = V F'. This equation is invariant to the stretching group
(x,t) — (Ax, A\t). We seek solutions in the form U (x, t) = W (&, ur, ug), with

=/t

AW AW
VF —— =
g TVE e

e W'(£) = 0, this is the constant state;
e W'(£) is a right eigenvector of VF associate to £ for all values taken by £&. The

curve W (£) is tangent to the right eigenvector w.
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The Riemann probiem: nonlinear systems

Up

Z

=PrL

Generalizing the concept seen for 1D
hyperbolic equations, we define a rarefaction

wave as a simple wave function of £ = x/t

ur, S| .CIZ/t S 51,

U(f) — W(gau[n UR) Si 51 < ZIZ’/t < 627
up s/t > &.

where up and w; must satisfy
Ae(wr) < Ap(up)
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The Riemann problem: nonlinear systems =PrL

From the original PDE

dW dW
-V E - = (
RTINS
we deduce that W' is a right eigenvector and that
&= M(W),

and on differentiating with respect to &, we get

L=V \e(W) - W(E),
Since W' is a right eigenvector, W'(£) = awy, thus a = [V A\ (W) - w; ]! The
function W is solution to the ODE

1reN Wi
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The Riemann problem: nonlinear systems =PrL

Consider the following linear hyperbolic problem:

oU oU
A
Ot 0x V)

where A = V F'. This equation is invariant to the stretching group
(x,t) — (Ax, A\t). We seek solutions in the form U (x, t) = W (&, ur, ug), with

=/t

AW AW
VF —— =
g TVE e

e W'(£) = 0, this is the constant state;
e W'(£) is a right eigenvector of VF associate to £ for all values taken by £&. The

curve W (£) is tangent to the right eigenvector w.
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The Riemann probiem: nonlinear systems

=PrL

A shock wave is a non-material surface
r = s(t) across which the solution is
discontinuous x = s. The Rankine-Hugoniot

relation must hold

$(ur, —up) = f(ur) — flug),

to which we add the Lax entropy condition

)\k(uL) > S > )\k(uL),

(jump in the kth field: we speak of a k-shock

wave)
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The Riemann problem: nonlinear systems =PrL

Summary

T he solution to the Riemann problem:
oU OFU)
ot ox

= 0,

subject to

U(f, O) :UQ(ZE) — {

involves n + 1 states separated by n waves

U; sixz <0,
Up sixz > 0.

related to each eigenvalue.
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The Riemann problem: nonlinear systems =PrL

For linear systems, the eigenvalues define shock waves. For nonlinear systems,
different types of waves are possible:
e shock wave: in this case, the Rankine-Hugoniot holds
U,y = F(Ul(xr)) — F(U(xr)) along with the entropy condition
Ni(Up) > s; > \(Ug)
e contact discontinuity (when an eigenvalue is constant or such that V ;- w; = 0):

the Rankine-Hugoniot relation holds, with the condition \;(U ) = \;(U g)

e rarefaction wave: the characteristics fan out \;(U ) < \;(UR), self-similar

solutions.
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The Riemann problem: nonlinear systems =PrL

Hugoniot locus

T he solution to the Riemann problem:

oU OFU) 0
Ot Ooxr
subject to
U; six <0
Uz, 0)=Ugx) =94 ="
Up sixz > 0.

involves n + 1 states separated by n waves

related to each eigenvalue.
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Example: The Saint-Venant equations

Let us consider the Saint-Venant equations:
Oihu + O,hu” + gho.h = 0.

We introduce the unknowns U = (h, hu), the flux function
F = (hu, hu”+ gh*/2) and the matrix A:

OF 0 1
A = .
oU (ghu2 2u>

ou ou
LA — = 0.
Ot Ox !

The conservative form is:

P

—
L

Similarity and Transport Phenomena in Fluid Dynamics
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=PrL

Eigenvalues and eigenvectors for the conservative formulation (with ¢ = v/gh)

Example: The Saint-Venant equations

1 =1 7 = 2
A U — C U+ c
(1} {——1)
w’L , )
U — C U+ C
3¢ 3¢
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=PrL

If we take (h,u) as variables, then the system is put in a nonconservative, but some
solutions are easier to work out. With U = (h, u), F' = (hu, hu®+ gh*/2) and

matrix A:
A OF_(un)
oU qgu
0

Example: The Saint-Venant equations
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Example: The Saint-Venant equations

=PrL

Eigenvalues and eigenvectors for the nonconservative formulation (with ¢ = \/gh)

1 =1 P = 2
eigenvalues Ai u—c u+c
. . C C
right eigenvectors w,; < —, 1 —, 1
g g
left eigenvectors v, SV Iey
[/ h) h?

Riemann invariants r;, w —2¢c u + 2c
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Example: The Saint-Venant equations =PrL

Shock conditions

oth) = thuy,
othu] = thu® + gh? /2,

with o the shock velocity. In a frame related to the shock wave, then v = u — ¢ and
hivy = hovo,
hiv: + ghi/2 = hovs + gh3/2.

There are two families

e l-shock: 0 < u; —cpetur—crp <o <urp-+cgr. v > vg: the tlux goes from left to
right when vy > 0;

e 2-shock: 0 > up+cretur —cr <o <ur—+cp. vg > vy the tlux goes from right
to left when vy > 0.
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Let us determine the Hugoniot locus, i.e., the points (hy v9) connected to (hy v) by a

Example: The Saint-Venant equations

1- or 2-shock wave

h2v2 — hlvl
0O —
ho — hq : 7 :
(houy — hyuy)? L ,  gh
= h | h
ho — by ey T

This gives us the shock speed and us(hslhy v7)

hi+ h
UQ—U1::(h2—h1)\/g 1hh 2,
1162

h
O = U T \/ (h1+h2)h2
1
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Example: The Saint-Venant equations =PrL

Rarefaction waves
We seek Riemann invariants r;, defined as V7. - wi. = 0. We work with the variables
(h, u). The first invariant is:

or or
F A\i— =0,
“oh You
whose characteristic equations are
du  dh
g  c

An integral is u 4+ 2¢. For the second invariant, we find u — 2c.
Along a 1-rarefaction wave, we have: uy + 2v/ghs = uy + 2+/ghy and the invariant
r1 = u + 2c¢ is constant along any characteristic curve associated with the eigenvalue

A1 = u — ¢ (when these fan out, r is in the cone formed by the characteristics).
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Returning to the variables (h, ¢ = hu), we

Example: The Saint-Venant equations

deduce

e Along a 1-rarefaction wave, we get:

q2/ho + 2v/ghs = q1/h1 + 2v/ghs;

e Along a 2-rarefaction wave, we get:

q2/ho — 2v/ghs = q1/h1 — 2/ gh.

Show and rarefaction waves in the (h, u)

space. Arbitrarily the curves are issuing from
(h7 u> — (17 O)
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Example: The Saint-Venant equations =PrL

Working out the solution to the Riemann problem
The construction method consists of introducing an intermediate state u,. [he state

(h, uy) can be connected to a left state (A, uy) through a 1-wave

Si(h«| hr, ur) = ur + 2/ ghy — 2+/gh. if h, < hy, 1-rarefaction wave
hye + hp
Rl(h*‘ hL, uL) = Uy, — (h* — hL)\/g Qh_I_h = If h* > hL 1-shock wave
x U]

It can be connected to a right state (hpr, ur) through a 2-wave

So(hy| hg, ur) =ur — 2+/ghgr + 2v/ghs if h, < hp 2-rarefaction wave

hye + hp .
Ro(hy| hg, ur) = up + (hy — hR)\/g 2h+h " if h, > hp 2-shock wave
IO R

Uy —

Uy —
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Example: The Saint-Venant equations

We begin with 1-waves, then 2-waves as
information on the left gauche is primarily
conveyed by the smallest eigenvalue, then the
others.

Note that tangents to the curves R; et 57 are

the same. Note also that an intermediate

0 : : 3 - > state is possible only if:

up —uy, < 2(\/ghR + \/ ghL).
For h;, =0 (hr = 0, resp.), then the 1-shock

wave (the 2-shock wave, resp.) is undefined.

Solution to the Riemann problem for
(hL,uL) — (1,0) et (hR, uR) — (2,0)
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Lacaze,
cylindric

L., A. Filella, and O. Thual, Steady and unsteady shear flows of a viscoplastic fluid in a
al Couette cell, Journal of Non-Newtonian Fluid Mechanics, 220, 126-136, 2015

=PrL

Let us consider the (dimensionless) governing equations for a

visco-elastoplastic material in a simple shear

@ — 1 | 87-
ot 02
or Ou
o 2
ot 0z (7),

with F(7) = max (0, |7] — )" 7/|7|. The boundary and initial
conditionsareu =0 at 2z =0, 7=0atz=1,and 7 =u =0 at
t = 0. Cast the system into its characteristic form. Write a

numerical code to solve the resulting system.
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