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Introduction

We study the ordinary differential equation

y′ =
x+ 3xy + 3(1− y)y

3x(2x+ 3y)
. (1)

We set
F = x+ 3xy + 3(1− y)y and G = 3x(2x+ 3y), (2)

such that the governing equation (1) reads y′ = F/G. The critical curves are
determined by setting F = 0 or G = 0:

• F = 0 leads to
x = 3

y(y − 1)

1 + 3y
. (3)

• G = 0 leads to x = 0 and
y = −2

3
x (4)

Figure 1 shows the phase portrait and the critical curves.
There are two critical points corresponding to F = G = 0: point O (0, 0)

and A (−3/10, 1/5).
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Figure 1: Phase portrait of Eq. (1). The black curve shows F = 0 while the red
lines show the critical curves G = 0.

1 Determination of the solution near O

It is not possible to linearize Eq. (1) at the origin point (multiplicity of the zero
root). Point O is a combination of saddle and node points, which is expected
because three critical curves cross at this point.
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2 Determination of the solution near A

Near point A (-3/10, 1/5), we have

F (−3/10 + x, 1/5 + y) =
8

5
y +

9

10
y +O(x) +O(y), (5)

for x → 0 and y → 0, and

G(−3/10 + x, 1/5 + y) = −9

5
y − 27

10
y +O(x) +O(y). (6)

If we linearize Eq. (1) around A, we get

du
dt = M =

(
−9/5 −9/5
8/5 9/10

)
· u. (7)

The eigenvalues of M are complex, and thus A is a focal point.

3 Asymptotic behaviour for x → ∞

Let us try to determine the asymptotic behaviour by using the dominant-balance
technique when y → ∞ and x → ∞.

Let us first assume that y ≫ x, then Eq. (1) can be simplified into

y′ = 3
y2

9xy
=

y

3x
⇒ y =

a

x1/3
(8)

where a is constant of integration. This solution is inconsistent with our initial
assumption (y ≫ x and y → ∞ when x → ∞). We discard it.

Let us now examine the linear asymptotic solution y = mx. Equation (1) can
be simplified into

m =
3mx2 + 3(−mx)mx

3x(2x+ 3mx)
= m

1−m

2 + 3m
⇒ m = −1

4
. (9)

Let us eventually assume that y ≪ x, then Eq. (1) can be simplified into

y′ = 3
xy

6x2
=

y

2x
⇒ y = a

√
x, (10)
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Figure 2: Phase portrait of Eq. (1) and plot of the particular solution to Eq. (1)
subject to the initial condition y(1) = 1.

where a is constant.
When plotting particular solutions to Eq. (1), it is obvious that they admit

asymptotic solutions in the form of Eq. (10), as illustrated by Fig. 2.
The question arises as to whether the asymptotic solution y = mx (for

x → ∞) with m = −1/4 is a special curve as it does not involve any con-
stant of integration, leading to think that it may be associated with a singular
point C (∞,∞) that is a node or saddle point. To answer this question, we use
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the following change of variable

u =
1

x
and v =

x

y
(11)

such that the singular point C (∞,∞) in the (x, y) coordinate system becomes
B (0, 1/m) in the (u, v) coordinate system. This change of variable can also be
written in the following form

x =
1

u
and y =

1

uv
. (12)

We can express the governing equation (1) using the new variables (12)

dy
dx =

du
dx

dy
du = −u2

(
− 1

vu2
− 1

uv2
dv
du

)
. (13)

We then find that in the system (u, v), Eq. (1) reads

v′ =
Fuv

Guv

=
−v(−13 + 3(u− 1)v + uv2

u(−9 + v(u2 − 6)
. (14)

There are thus two critical curves

Fuv = 0 ⇒ u =
3

v

4 + v

3 + v
, (15)

and
Guv = 0 ⇒ v =

9

u2 − 6
and u = 0. (16)

As expected there is a critical point at B (0,−4)which is the image of the singular
point C (∞,∞). If we linearize Eq. (14) around B, we get

du
dt = M =

(
15 0
16 −12

)
· u. (17)

whereu denotes the vector (u(t), v(t)) and the eigenvalues are λ± = 15 and−12
associated with the eigenvectors e+ = (27, 16) and e− = (0, 1). The eigenvalues
are real and of different sign, the critical point is a saddle point. Figure 3 shows
the phase portrait of the governing equation (14).
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Figure 3: Phase portrait of Eq. (14). The black curve shows Fuv = 0 while
the red lines show the critical curves Guv = 0. The dashed line shows the line
alignedwith the eigenvector e+ = (27, 16). The orange line shows the numerical
solutions to Eqs. (14) and (18).

If we want to find the numerical solution to Eq. (14), that is, the special solu-
tion to Eq. (14) passing through point B

v′(u) =
Fuv

Guv

, subject to v(ϵ) = −4 +
16

27
ϵ (18)

for x ≥ ϵ (right branch). To avoid the singularity and the failure of the numerical
algorithm, we start from a neighboring point located at u = ϵ where ϵ ≪ 1 is a
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small number. We do the same for the branch on the left

v′(u) =
Fuv

Guv

, subject to v(ϵ) = −4− 16

27
ϵ (19)

for x ≤ −ϵ. We can then return to the original variables x = 1/u and y =
1/(uv). Figure 4 shows the numerical solution in the (u, v) and (x, y) systems.
The numerical result’s accuracy depends on the algorithm used. Here we find
that v → 2.81 when u → ∞. The left branch (u < 0) diverges for u = −1.93.

Can we determine the behaviour of the solution near O directly from the
governing equation (1)? To do this, we can make an asymptotic expansion of

y(x) =
F (x, y(x))

G(x, y(x))
. (20)

To order 1 near x = 0, we have

f(x) = F (x, y(x)) = f(0) + xf ′(0) + O(x2), (21)

where
f ′(0) =

∂F

∂x
+ y′(0)

∂F

∂y
= 1 + 3y′(0). (22)

Similarly
g(x) = G(x, y(x)) = g(0) + xg′(0) + O(x2), (23)

where
g′(0) =

∂G

∂x
+ y′(0)

∂G

∂y
= 0. (24)

And to first order, the differential term y′ near O takes the form

y′(x) = y′(0) + O(x). (25)

We obtain an indeterminate form where

y′(0) =
1 + 3y′(0)

0
. (26)

We may hope that by setting y′(0) = −1/3, we can remove the singularity. To
see whether this is correct, we have to expand the terms to order 2. We have

f ′′(x) =
∂2F

∂x2
+ y′′

∂F

∂y
+ 2y′

∂2F

∂y∂x
+ y′2

∂2F

∂y2
, (27)
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Figure 4: (a) Numerical solution to Eq. (14). (b) Replot of the numerical solution
to Eq. (14) in the (x, y) system.

f ′′′(x) =
∂3F

∂x3
+3y′

∂3F

∂x2∂y
+3y′2

∂3F

∂x∂y2
+3y′′

∂2F

∂y∂x
+y′3

∂3F

∂y3
+3y′y′′

∂2F

∂y2
+y′′′

∂F

∂y
,

(28)
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and
g′′(x) =

∂2G

∂x2
+ y′′

∂G

∂y
+ 2y′

∂2G

∂y∂x
+ y′2

∂2G

∂y2
. (29)

We look for a solution near O in the form

y(x) = 0 +mx+
1

2
px2 +

1

6
qx3 +O(x4) (30)

where m = y′(0), p = y′′(0) and q = y′′′(0). The derivative is

y′(x) = m+ px+O(x2) (31)

and the functions F and G become

F (x, y(x)) = 0+(1+3m)x+
1

2
x2(6m−6m2+3p)+

1

6
x3(9p−18mp+3q), (32)

and
G(x, y(x)) = 0 + 0x+

1

2
x2(12 + 18m) +O(x3). (33)

We thus have to solve 
0 = 1 + 3m,

m =
6m− 6m2 + 3p

12 + 18m
,

p =
1

2

9p− 18mp+ 3q

12 + 18m
.

(34)

We find
m = −1

3
, p =

2

9
and q = −2

9
. (35)

Figure 5 shows the separatrix — the numerical solution to Eq. (14) — and
compares it with the Taylor expansion y = mx+px2/2+qx3/6+O(x4). Figure
4 shows that v → −2.81 when u → ∞. Recall that this limit found numerically
is sensitive to the details of the numerical algorithm used.

Figure 6 shows the phase portrait with the separatrix (Taylor expansion and
numerical solution).
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Figure 5: Numerical solution to Eq. (14) with the change of variable (12) and
comparison with the Taylor expansion y = mx+px2/2+ qx3/6+O(x4)—with
m, p and q given by Eq. (35) — and y = −x/2.81.
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Figure 6: phase portrait of Eq. (1). The dashed black curve shows F = 0 while
the dashed red lines show the critical curves G = 0. The solid line shows the
Taylor expansion of the separatrix y = mx+ px2/2 + qx3/6 +O(x4), while the
dot-dashed green line shows the numerical solution to Eq. (14).
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