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Introduction

We study the ordinary differential equation

T+ 3zy + 3(1 —
3z (2x + 3y)

We set
F=2+3zy+3(1 —y)yand G = 3z(2z + 3y), (2)

such that the governing equation (fl) reads 4/ = F/G. The critical curves are
determined by setting F' = 0 or G = 0:

o« F'=10leads to

y(y — 1)
=3 ) 3
‘ 1+ 3y ®)
e« G =01leadstoz =0 and
2
y=-—37 (4)

Figure [l shows the phase portrait and the critical curves.

There are two critical points corresponding to /' = G = 0: point O (0, 0)
and A (—3/10,1/5).



Figure 1: Phase portrait of Eq. (fl). The black curve shows F' = 0 while the red
lines show the critical curves G' = 0.

1 Determination of the solution near O

It is not possible to linearize Eq. () at the origin point (multiplicity of the zero
root). Point O is a combination of saddle and node points, which is expected
because three critical curves cross at this point.



2 Determination of the solution near A

Near point A (-3/10, 1/5), we have

8 9
F(=3/10+2,1/5+y) = gy+ﬁy+0(x)+0(y), (5)
forz — 0and y — 0, and
9 27
G(-3/104+z,1/5+y) = Y- 1—0y+0(a:)+0(y). (6)
If we linearize Eq. ([I) around A, we get
du .~ [ —-9/5 —9/5
E_M_( 8/5 9/10)"“" @

The eigenvalues of M are complex, and thus A is a focal point.

3 Asymptotic behaviour for z — oo

Let us try to determine the asymptotic behaviour by using the dominant-balance
technique when y — oo and z — oc.

Let us first assume that y > x, then Eq. ([ll) can be simplified into

/ 3 y y a (8)

=y = — = = —_—
Y 92y 3z YE

where a is constant of integration. This solution is inconsistent with our initial
assumption (y > z and y — oo when x — 00). We discard it.

Let us now examine the linear asymptotic solution yy = mz. Equation ({l}) can
be simplified into
_ 3ma?4+3(—max)mz  1—m 1

- N — 9
3z(2x + 3mx) Mo am " 4 ©)

Let us eventually assume that y < z, then Eq. ([l) can be simplified into

LY Y
Y 62 —op Y ay/z, (10)
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Figure 2: Phase portrait of Eq. (fl)) and plot of the particular solution to Eq. ()
subject to the initial condition y(1) = 1.

where a is constant.

When plotting particular solutions to Eq. (fl), it is obvious that they admit
asymptotic solutions in the form of Eq. ([L0)), as illustrated by Fig. B.

The question arises as to whether the asymptotic solution y = max (for
x — oo) with m = —1/4 is a special curve as it does not involve any con-
stant of integration, leading to think that it may be associated with a singular
point C (00, 00) that is a node or saddle point. To answer this question, we use



the following change of variable

1
u:—andv:z (11)
Y Yy

such that the singular point C (oo, 00) in the (z,y) coordinate system becomes
B (0,1/m) in the (u,v) coordinate system. This change of variable can also be
written in the following form

1 1

r=—andy = —. (12)
u uv

We can express the governing equation ([Il) using the new variables ([12)
dy dudy 9 1 1 dv
= —— - —— ). 13
dr dzxdu " ( vu?  uv? du) (13)
We then find that in the system (u, v), Eq. (fl) reads

o Fuy —v(=1343(u—1)v + qu. (14)
G u(—=9 + v(u® — 6)

There are thus two critical curves

34+ v
F,=0=u=- , 15
Y v3+v (15)
and 9
Guw=0=v=— and u = 0. (16)
u* —6

As expected there is a critical point at B (0, —4) which is the image of the singular
point C (00, 00). If we linearize Eq. (14) around B, we get

du 15 0

E:M:<16 _12>-u. (17)
where u denotes the vector (u(t), v(t)) and the eigenvalues are A\, = 15and —12
associated with the eigenvectors e, = (27,16) and e_ = (0, 1). The eigenvalues

are real and of different sign, the critical point is a saddle point. Figure [ shows
the phase portrait of the governing equation ([14).
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Figure 3: Phase portrait of Eq. ({14). The black curve shows F,, = 0 while
the red lines show the critical curves GG, = 0. The dashed line shows the line
aligned with the eigenvector e, = (27, 16). The orange line shows the numerical

solutions to Egs. (@) and (@)

If we want to find the numerical solution to Eq. (@), that is, the special solu-
tion to Eq. (14) passing through point B

16

Fu'l) .
v'(u) = . subject to v(e) = —4 + 7€

(18)

for x > € (right branch). To avoid the singularity and the failure of the numerical
algorithm, we start from a neighboring point located at u = € where e < 1l is a
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small number. We do the same for the branch on the left

Fuy . 16
V' (u) = e subject to v(e) = —4 — 7€ (19)
for © < —e. We can then return to the original variables z = 1/u and y =
1/(uv). Figure §f shows the numerical solution in the (u,v) and (x, %) systems.
The numerical result’s accuracy depends on the algorithm used. Here we find
that v — 2.81 when u — oo. The left branch (v < 0) diverges for u = —1.93.

Can we determine the behaviour of the solution near O directly from the
governing equation (f)? To do this, we can make an asymptotic expansion of

F(z,y(x))
r) = ——"—=. 20
) = G yw) 20
To order 1 near z = 0, we have
f(z) = F(z,y(x)) = £(0) + 2f'(0) + O(2?), (21)
where OF OF
"0)=—=—+y(0)=—=1 '(0). 22
F1(0) = 5o 4905 = 143/(0) @2
Similarly
g9(x) = G(z,y(x)) = g(0) + 2¢'(0) + O(?), (23)
where 5 50
/ — / P . 24
g0 =G, +0)5 =0 29
And to first order, the differential term 1’ near O takes the form
y'(z) = y'(0) + O(z). (25)
We obtain an indeterminate form where
1+ 39'(0
y(0) = 20 (26)

We may hope that by setting y/(0) = —1/3, we can remove the singularity. To
see whether this is correct, we have to expand the terms to order 2. We have

PF OF L PF ,0°F

f(x>:W+y oy y8y8x+y oy?’

(27)
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Figure 4: (a) Numerical solution to Eq. (@) (b) Replot of the numerical solution

to Eq. (14) in the (z, ) system.
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and
0°G 4, 0G 0°G 002G

" = — — 4+ 2 _— 29
g'(2) =55 +y o T a0 TV 5 (29)
We look for a solution near O in the form
1 1
y(x) = 0+ max + —pz® + —qz* + O(z?) (30)

2 6

where m = ¢/(0), p = ¥”(0) and ¢ = y"’(0). The derivative is
Y (z) = m + pr + O(2?) (31)
and the functions [’ and GG become

1 1
F(z,y(x)) = O+(1+3m)x+§x2(6m—6m2+3p)+6x3(9p—18mp+3q), (32)

and
1
G(z,y(x)) =0+ 0x + 5:1:2(12 + 18m) + O(z?). (33)
We thus have to solve
0=1+3m,
6m — 6m? + 3p
m =
124 18m (34)
B 19p — 18mp + 3¢
P T 9 T 18m
We find . 5 5
——— p=candq=—-. 35
m 5 P=gandg 5 (35)

Figure | shows the separatrix — the numerical solution to Eq. (14) — and
compares it with the Taylor expansion y = mx + px?/2+ qx® /6 4+ O(z*). Figure
d shows that v — —2.81 when u — co. Recall that this limit found numerically
is sensitive to the details of the numerical algorithm used.

Figure f shows the phase portrait with the separatrix (Taylor expansion and
numerical solution).
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Figure 5: Numerical solution to Eq. (14) with the change of variable (1) and
comparison with the Taylor expansion y = mx + pz? /2 + qz? /6 + O(z*) — with
m, p and q given by Eq. (85) — and y = —z/2.81.
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Figure 6: phase portrait of Eq. (fl). The dashed black curve shows F = 0 while
the dashed red lines show the critical curves G = 0. The solid line shows the
Taylor expansion of the separatrix y = mx + pz?®/2 + qz* /6 + O(z*), while the
dot-dashed green line shows the numerical solution to Eq. ((14).

11



	Determination of the solution near O
	Determination of the solution near A
	Asymptotic behaviour for x

