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Foreword

This tutorial is primarily based on the material written by Randall LeVeque and his collaborators.

References

Hyperbolic equation theory is described in a few books, including:

• Numerical Methods for Conservation Laws (LeVeque, 1992)

• Finite Volume Methods for Hyperbolic Problems (LeVeque, 2002)

• Riemann Problems and Jupyter Solutions (Ketcheson et al., 2020)

Some review papers can give an overview of the Clawpack approach (Berger et al., 2011; Ketcheson
et al., 2012, 2013; Mandli et al., 2016).

Online material

Clawpack can be downloaded from its official website www.clawpack.org. It can also be downloaded
from github: github.com/clawpack.

The new book based on jupyter notebooks by David Ketcheson et al. offers a convenient way
of learning clawpack and the theoretical fundamentals through a series of examples. Many of these
examples will be used here. The html version of this book is available online.

Jupyter notebook viewers: cocalc.com and nbviewer.jupyter.org.

Jupyter can be installed under different operating systems (see jupyter.org/install). I personally
use the Anaconda distribution or code visual studio and their user graphics interface. Registred EPFL
students can use jupyter notebooks online by accessing the noto platform.

I place my jupyter notebooks in my github page: github.com/cancey.

Additional ressources

• Shaltop (Peruzzetto et al., 2021)

• Basilisk

• Iber (Bladé et al., 2014; Cea & Bladé, 2015)
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• Basement

• OpenFoam

• DassFlow

Notation

The notation used in this tutorial differs from that used by Randall LeVeque. I use the classic tensorial
notation: vectors and tensors are denoted by boldface symbols. I also use the operator · to refer to the
contracted product (“produit une fois contracté” in French) and : for the double-contracted product.

With this notation, we introduce the following operations between tensorsA andB whose matrix
representation is Aij (i row, j column index) andBij , respectively, v andw two vectors of coordinates
vi and wi in a given basis:

A ·B =
∑
j

AijBjk

A : B =
∑
i,j

AijBji

A · v =
∑
j

Aijvj

w · v =
∑
i

wivi

Sometimes indices are in superscript when there is no possible confusion with exponents of a power
function and the subscript position is already in use.
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CHAPTER1
Hyperbolic equations

Let us start with linear hyperbolic systems. Nonlinear equations are more complex, but the solutions
to the Riemann problem have a similar structure to that exhibited by linear systems. Furthermore,
finite-volume numerical solvers involve approximate (linearised) solutions to this Riemann problem.

1.1 Riemann problems for linear hyperbolic equations

1.1.1 Linear system

For one-dimensional problems, a linear hyperbolic equation is defined by an equation of the form
∂

∂t
q +A · ∂

∂x
q = S, (1.1)

where q is a vector with m components representing the unknowns qi, A is an m ×m matrix whose
eigenvalues λi are assumed to be real and distinct, and S is a vector (of dimension m) called the source
term, x is the spatial coordinate, and t is time. For the moment, we assume that S = 0 (the equation is
said to be homogenous). The matrix A has m real eigenvalues λi, which are associated with m left vi

and m right eigenvectors wi:
A ·wi = λiwi and vi ·A = λivi. (1.2)

In the following, the eigenvalues are ranked in ascending order: λ1 < λ2 · · · < λm.

1.1.2 Diagonalisation

Equation (1.1) is a system of coupled partial differential equations. It is easier to solve uncoupled equa-
tions than coupled equations, and thus our first task is to see how we can uncouple Eq. (1.1).

If we multiply Eq. (1.1) by vi, we obtain:

vi ·
∂

∂t
q + vi ·A · ∂

∂x
q = vi · S. (1.3)

We introduce the characteristic variable or Riemann variable si (1 ≤ i ≤ m):
si = vi · q and the vector s = (s1, · · · , sm), (1.4)

and the diagonal matrixΛ = diag(λ1, · · ·λm). With this notation, we transform Eq. (1.3) into a system
of m uncoupled equations:

∂

∂t
s+Λ · ∂

∂x
s = L · S, (1.5)

where L is a matrix whose rows are made of the left eigenvectors: L = [v1, · · · ,vm]T .

1



2 Chapitre 1 Hyperbolic equations

1.1.3 Mathematical complement

Similarly to what we did with L, we define the matrix R whose columns are made of the right eigen-
vectors: R = [w1, · · · ,wm]. The following relationships hold true

A ·R = R ·Λ, (1.6)
L ·A = Λ ·L. (1.7)

R is sometimes called the modal matrix, while Λ is called the spectral matrix. We also have:

A = R ·Λ ·R−1, (1.8)
A = L−1 ·Λ ·L. (1.9)

Because when taking the transpose of vi ·A = λivi we have

(vi ·A)T = AT · vT
i = λiv

T
i , (1.10)

the left eigenvectors vi of A is also the right eigenvector of AT .

Multiplying Eq. (1.6) by L and Eq. (1.7) by R, we get

L ·A ·R = L ·R ·Λ = Λ ·L ·R. (1.11)

When two matrices M and D (where D is diagonal) satisfy D · M = M · D, then M is diagonal.
This means here thatM = L ·R is diagonal. There is no unique choice forR andL as any multiple of
an eigenvector is also an eigenvector. As a consequence, the product L ·R is a diagonal matrix whose
entries can take any value.

We can always define the right eigenvectors such that:

R = L−1. (1.12)

A geometrical interpretation of R and L is the following: as we have R · L = L−1 · L = 1 (where 1
denotes the identity matrix), then the left and right eigenvectors are orthogonal two by two: vi ·wi ≠ 0
and vi ·wk = 0 for k ̸= i.

In practice, we determine the right eigenvectors wi. The left eigenvectors are the right eigenvec-
tors of the transpose of A. The resulting matrices R and L satisfy: R · LT = diag(wk · vk)1≤k≤m.
Furthermore, by normalising the right eigenvectors (w̃i = wi/|wi|), we can enforce L = R−1, a
relationship that turns out to be helpful thereafter.

Example Let us consider the 3× 3 matrix

A =

 1 2 3
4 5 6
2 8 2

 .

The eigenvalues are λ1 = −3, λ2 = −1, λ3 = 12 associated with the right eigenvectors

w1 =

 −3
0
2

 , w2 =

 −1
−1
2

 , w3 =

 11
26
23

 ,

and the left eigenvectors are determined by seeking the right eigenvectors of the transpose of A

v1 =

 5
−3
1

 , v2 =

 4
−7
6

 , v3 =

 2
4
3

 .



1.1 Riemann problems for linear hyperbolic equations 3

It can be checked thatA ·R−R ·Λ is the null matrix. Note that the order with which the product
is made is important. For instance, A ·R −Λ ·R provides a matrix whose diagonal entries are zero,
but the off-diagonal entries are nonzero

A ·R−Λ ·R =

 0 2 143
0 0 390

−26 −30 0


and similarly L ·A−Λ ·L provides the null matrix.

We can also check that L ·R is a diagonal matrix:

L ·R =

 −13 0 0
0 15 0
0 0 195

 .

1 #import the numpy libray and its linear algebra sublibrary
2 import numpy as np
3 from numpy import linalg as la
4 eps=1e-8

5 #examples
6 A=np.array([[1,2,3],[4,5,6],[2,8,2]])

7 #computing the right and left eigenvalues and vectors
8 # @ refers to the simple contracted product and .T provides the transpose
9 # R: matrix whose columns are right eigenvectors.

10 # L: matrix whose rows are left eigenvectors.
11 # LAM: diagonal matrix whose entries are the eigenvalues
12 lamb1, R = la.eig(A)
13 lamb2, L = la.eig(A.T)
14 L=L.T
15 print("R = \n",R)
16 print("L = \n",L)
17 LAM = np.diag(lamb1)
18 print("[lambda] = \n",LAM)

R =
[[-3.02079270e-01 -8.32050294e-01 -4.08248290e-01]
[-7.14005547e-01 2.07143878e-16 -4.08248290e-01]
[-6.31620292e-01 5.54700196e-01 8.16496581e-01]]
L =
[[-0.37139068 -0.74278135 -0.55708601]
[-0.84515425 0.50709255 -0.16903085]
[ 0.39801488 -0.69652603 0.59702231]]
[lambda] =
[[12. 0. 0.]
[ 0. -1. 0.]
[ 0. 0. -3.]]

31 #check that w is made by the right eigenvectors. We compute C = A.R-R.LAM.
We replace small values by 0.

32 # The diagonal of C provides A.w_i-lambda_i w_i
33 # We check that this diagonal is zero
34 C=A@R-R@LAM
35 C[abs(C)<eps]=0
36 print(C)
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[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

41 #We do the same with thee left eigenvectors and check that C=L.A- LAM.L is
zero.

42 C=L@A -LAM@L
43 C[abs(C)<eps]=0
44 print(C)

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

49 #Check that the product L.R gives a diagonal matrix
50 lr=L@R
51 lr[lr<eps]=0
52 print(lr)

[[0.99440626 0. 0. ]
[0. 0.6094494 0. ]
[0. 0. 0.60933335]]

56 #left and right eigenvectors are perpendicular when not associated with the
same eigenvalue

57 w1 = R[:,0] # First column is the first right eigenvector
58 w2 = R[:,1]
59 w3 = R[:,2]
60
61 v1 = L[0,:] # First row is the first left eigenvector
62 v2 = L[1,:]
63 v3 = L[2,:]
64
65 # v_1.A-lambda_1v_1 = 0 ?
66 result=v1@A-lamb[0]*v1
67 result[result<eps]=0
68
69 print("v_1.A-lambda_1*v_1 = ",result)
70 # v_1 and w_1 normal?
71 vw11=v1@w1;
72 vw12=v1@w3;
73 print("v_1.w_1 = ",vw11)
74 print("v_1.w_2 = ",vw12)

v_1.A-lambda_1*v_1 = [0. 0. 0.]
v_1.w_1 = 0.9944062617398504
v_1.w_2 = 0.0

[[0.99440626 0. 0. ]
[0. 0.6094494 0. ]
[0. 0. 0.60933335]]

1.1.4 Characteristic form and solution to the Cauchy problem for ho-
mogenous equations

When we have seen that when we want to solve a hyperbolic problem in the form (1.1), the strategy
is to uncouple the original equations by making a change of variable q → s = L · q. The original
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equation (1.1) becomes
∂

∂t
s+Λ · ∂

∂x
s = L · S. (1.13)

Each uncoupled equation of the system (1.13) can be put into a characteristic form

∂si
∂t

+ λi
∂si
∂x

= vT
i · S ⇔ dsi

dt = vi · S along the straight line dx
dt = λi. (1.14)

For a homogenous problem, this means that si is constant along the line x = λit+ x0. If we know
the initial value q0 = q(x, t = 0), then we can deduce the initial condition for s: s0 = s(x, t = 0) =
L · q0. For a homogenous equation, the solution to Eq. (1.14) is

si(x, t) = si,0(x− λit), (1.15)

and thus the solution to the initial-value (Cauchy) problem is

q(x, t) = L−1 · s = R · s (1.16)

=
m∑
i=1

si(x, t)wi, (1.17)

=
m∑
i=1

s0,i(x− λit)wi, (1.18)

=
m∑
i=1

(vi ·q0 (x− λit))wi. (1.19)

The solution q is a combination of the right eigenvectors. In other words, the initial conditions propa-
gate along the directions wi.

This propagation is a consequence of the travelling-wave structure. Indeed, the linear hyperbolic
system (1.1) is invariant to the travelling wave group. If we seek a solution in the form s(x, t) = s(ξ)
where ξ = x− at and a is the wave velocity, then Eq. (1.1) leads to:

−a
d
dξs+A · d

dξs = 0. (1.20)

This shows that s′ is an eigenvector of A and a must be one of the eigenvalues, say λi. Substituting
the Cauchy solution Eq. (1.16) into Eq. (1.20) shows that this condition is met. For strictly hyperbolic
systems (i.e., when all eigenvalues are real and distinct), the right eigenvectors form a basis, and the
decomposition (1.16) is unique.

The solution to the Cauchy problem is the superposition ofmwaves, each is advected independently
at the velocity λi along the direction wi, with no change in shape when the system is homogenous.

1.1.5 Simple wave

When the initial conditions are constant for all but one value k

si,0(x) = si for i ̸= k and sk,0(x) = sk,0(x− λkt), (1.21)

then the solution
q(x, t) = q0(x− λkt) = sk,0(x− λkt)wk +

∑
i ̸=k

siwi (1.22)

is called a simple wave. Propagation concerns the direction k alone.
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1.1.6 Riemann problem: definition

A Riemann problem is an initial-value problem for which the initial value is piecewise constant with a
single jump discontinuity at some point, by default at x = 0:

q =

{
ql if x < 0,
qr if x > 0,

(1.23)

where ql and qr are called the left and right states, respectively. Because the right eigenvectors form
a basis, we can decompose ql and qr in this basis

ql =

m∑
i=1

αl
iwi and qr =

m∑
i=1

αr
iwi, (1.24)

where αl
i and αr

i are two constants. Each Riemann variable si = v · q satisfies the initial condition

si,0 =

{
sli = vi · ql = αl

i if x < 0,
sri = vi · qr = αl

r if x > 0.
(1.25)

The solution to the individual Riemann problem shows that the initial discontinuity propagates with
speed λi along the direction wi:

si(x, t) =

{
αl
i if x < λit,

αr
i if x > λit.

(1.26)

Using Eq. (1.16), we deduce that the solution to the Riemann problem is

q(x, t) = R · s =

m∑
i=1

si(x, t)wi, (1.27)

We can interpret this solution in the following way. Let us consider a point P at (x, t). We refer to I as
the maximum index i for which x > λit. As illustrated by the example of Fig. 1.1, we can decompose
the solution into two parts, either reflecting the left or right initial conditions

q =
I∑

i=1

αr
iwi +

m∑
i=I+1

αl
iwi. (1.28)

When crossing the ith characteristic, there is a jump from αl
i to αr

i while the other coefficients
remain constant. As illustrated in Fig. 1.2(a), the plane is split into different wedges separated by
characteristic lines of slope λi. Across the ith characteristic, the solution q experiences a jump:

∆q = (αr
i − αl

i)wi, (1.29)

which can be written as
∆q = αiwi with αi = αr

i − αl
i. (1.30)

For linear hyperbolic systems, a strategy of solving the Riemann problem is to decompose the initial
jump ∆q = qr − ql in the right eigenvector basis

∆q =

m∑
i=1

αiwi, (1.31)

which requires determining the coefficient αi

∆q = R ·α ⇒ α = R−1 ·∆q = L ·∆q. (1.32)
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Figure 1.1Characteristic lines emanating from the origin point (solid lines) and joiningP (dashed lines).
In this figure, we have I = 1: P is on the right of the first characteristic curve x = λ1t (and thus the P
coordinates satisfy x > λ1t), and on the left of the two others. Here we have q = αr

1w1+αl
2w2+αl

3w3.

As this decomposition is central to Clawpack, we give further information about this decomposition.
Let us introduce the wave

W i = αiwi. (1.33)

The solution to the Riemann problem can thus be written

q =
m∑
i=1

siwi with si = vi · q0, (1.34)

q = ql +
I∑

i=1

W i, (1.35)

q = qr −
m∑

i=I+1

W i, (1.36)

q = ql +

m∑
i=1

H(x− λit)W i, (1.37)

where H is the Heaviside function. Equation (1.35) can also be written

q = ql +
∑

λi<x/t

W i, (1.38)

which can be interpreted as follows (see the example in Fig. 1.1): at time t and position x, the state q is
the left initial state to which contributions from the right initial state are added if this point is on the
right of the characteristic x = λit (that is, when x > λit).

1.1.7 Phase plane representation for m = 2 equations

For a linear system of two hyperbolic equations, the solution consists of two discontinuities x = λ1t
and x = λ2t, and within the wedge formed by these two discontinuities, there is an intermediate
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(constant) state
q∗ = αr

1w1 + αl
2w2. (1.39)

As shown by Fig. 1.2, the intermediate state can be expressed in different ways:

q∗ =αr
1w1 + αl

2w2,

=ql + (αr
1 − αl

1)w1 = ql +W 1,

=qr − (αr
2 − αl

2)w2 = qr −W 2.

The intermediate q∗ is related to the left state ql by the shock wave W 1 = (αr
1 − αl

1)w1, and to the
right state qr by the shock wave −W 2 = −(αr

2 − αl
2)w2.

We can also plot the solution in the phase plane (q1, q2): starting from the left state ql, we follow
the directionw1 to reach the intermediate state q∗, and finally the directionw2 to reach the right state
qr , shown by Fig. 1.2(b). As information is propagated along the characteristic curves at the velocities
λ1 < λ2, the intermediate state is necessarily connected to the left state by the 1-shock wave (velocity
λ1 and directionw1), and it is connected to the right state by the 2-shockwave (velocityλ2 and direction
w2).

(a)

-0.5 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

1

2

3

4

(b)

Figure 1.2 (a) General solution to a two-dimensional Riemann problem in the (x, t) plane. The inter-
mediate state q∗ is separated from the left and right states by the shocks W i = αiwi with i = 1 or 2.
(b) Phase plane representation.

1.2 Nonlinear scalar problem

Let us consider the following nonlinear hyperbolic equation called the nonlinear advection equation,
which can be cast in two different forms called the conservative (left equation) and non-conservative
(right equation) forms:

∂

∂t
q +

∂

∂x
f(q) = S(q, x, t) ⇔ ∂

∂t
q + c(q)

∂

∂x
q = S(q, x, t), (1.40)
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where f is the flux function (a function of q, and possibly of x and t), q is the unknown, S is the source
term, and c = f ′(q) is the celerity. We assume that the celerity is an increasing function of q, which
implies that the flux function is convex (f ′′ > 0). Nonconvex functions are possible, but they lead to
difficulties that we will not address here. The equation is said to be homogeneous when the source term
s is zero

∂

∂t
q +

∂

∂x
f(q) = 0. (1.41)

1.2.1 Characteristic form

Equation (1.40) can be put into the characteristic form

d
dtq = S(q, x, t) along the curve dx

dt = c(q). (1.42)

When the source term is zero (S = 0), then q is constant along the characteristic curve, which is
therefore a straight line of slope c, whose value is fixed by the initial or boundary condition.

1.2.2 Rankine–Hugoniot equation

As the celerity c(q) is function of q, the characteristic curves are not parallel like in the linear case, and
may intersect. As multivalued functions are not possible (this would otherwise break the assumptions
of smoothness and uniqueness of the solution), then a shock takes place and connects two continuous
branches of the solution. By taking a control volume around the shock position x = σ(t), we can
deduce that its velocity σ̇ is given by the Rankine–Hugoniot equation:

σ̇ =
Jf(q)KJqK , (1.43)

where the double brackets denote the flux jump across the shock wave

Jf(q)K = lim
x→σ, x>σ

f(q)− lim
x→σ, x<σ

f(q).

Proof. Let us integrate Eq. (1.40) over the interval [xl, xr] with a discontinuity at x = σ(t) (with
xl < σ < xr): ∫ xr

xl

∂

∂t
q(x, t)dx = −

∫ xr

xl

∂

∂x
f [q(x, t)]dx

= f(q(xl, t))− f(q(xr, t)).

We would like to swap spatial integration and time differentiation while paying attention to the discon-
tinuity at x = σ(t). By breaking down the interval [xl, xr] into two parts, we can write

d
dt

∫ xr

xl

q(x, t)dx =
d
dt

(∫ σ

xl

q(x, t)dx+

∫ xr

σ
q(x, t)dx

)
,

and by differentiating with respect to t and using Leibniz rule, we deduce:

d
dt

∫ xr

xl

q(x, t)dx =

∫ σ

xl

∂

∂t
q(x, t)dx+

∫ xr

σ

∂

∂t
q(x, t)dx+ σ̇q(xr, t)− σ̇q(xl, t).

The integral version of Eq. (1.40) is thus

− d
dt

∫ xr

xl

q(x, t)dx+ σ̇q(xr, t)− σ̇q(xl, t) = f(q(xr, t))− f(q(xl, t)).



10 Chapitre 1 Hyperbolic equations
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-1.0
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0.0
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1.0
(a)

Figure 1.3 (a) multivalued function. (b) The multivalued part is replaced by a discontinuity. The areas
of the two lobes are identical.

Taking the limit xr → σ and xl → σ, we eventually find the desired expression:

σ̇JqK = Jf(q)K.
⊓⊔

One problem with the Rankine–Hugoniot equation (1.43) is that it can provide solutions that are
mathematically correct, but physically unrealistic because they violate the principle of energy dissipa-
tion (shocks dissipate energy) (Smoller, 1982; Holden & Risebro, 2015). One method for determining
whether a solution is physically admissible is to consider a regularised version of the governing equa-
tion (1.41)

∂

∂t
q +

∂

∂x
f(q) = µ

∂2

∂x2
q, (1.44)

where µ is a constant viscosity (µ > 0). We would like to solve the regularised equation (1.40) in the
limit of small viscosities µ → 0. We are seeking a travelling-wave solution in the form

q(x, t) = U(ξ) with ξ =
x− at

µ
(1.45)

where a > 0 is the wave velocity, and U satisfies the boundary conditions{
U → ql when ξ → −∞,
U → qr when ξ → +∞.

(1.46)

Substituting the travelling wave (1.45) into Eq. (1.44) and making the change of variable

∂·
∂t

=
∂·
∂ξ

∂ξ

∂t
= −a

µ

d·
dξ and ∂·

∂x
=

∂·
∂ξ

∂ξ

∂x
=

1

µ

d·
dξ ,

we obtain the following equation
Ü(ξ) = −aU̇ +

d
dξ f(U),
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whose integration provides
U̇(ξ) = −aU + f(U) + b,

where b is a constant of integration. By looking at the boundary conditions (1.46), we find that this
constant satisfies the following condition (1.46)

b = aqr − f(qr) = aql − f(ql), (1.47)

which is possible only if a satisfied

a =
f(qr)− f(ql)

qr − ql
. (1.48)

It can be observed that the wave speed a coincides with the shock speed σ̇ predicted by Eq. (1.43): a = σ̇.
We thus have to solve the equation

U̇ = V (U) = −σ̇(U − ql) + f(U)− f(ql) = −σ̇(U − qr) + f(U)− f(qr).

We note that ql and qr are equilibrium points of V (U): V (ql) = V (qr) = 0. To determine the behaviour
of the solution near equilibrium point, we linearise V . We assume that ql > qr and we start with V
near ql:

U̇ = V (U) = −σ̇(U − ql)− f(ql) + f(ql) + (U − ql)f
′(ql) + · · · ,

and introducing η = U − ql, we have to first order in η

dη
dξ = (f ′(ql)− σ̇)η,

whose solution is U = ql+u0 exp[(f ′(ql)− σ̇)ξ]where u0 is a constant of integration. When ξ → −∞,
the boundary condition (1.46) imposes that f ′(ql)− σ̇ > 0 and thus

f ′(ql) > σ̇.

Reiterating the same procedure for the right state qr , we obtain that f ′(qr) < σ̇. We then obtain a
relation that is called the Lax entropy condition

f ′(qr) < σ̇ < f ′(ql). (1.49)

This condition is consistent with the flux convexity (f ′′ > 0 implies that f ′ is an increasing function).
This would have not been the case if we had initially assumed that qr > ql.

1.2.3 Riemann problem

Let us consider the Riemann problem for a homogeneous hyperbolic equation:

∂

∂t
q +

∂

∂x
f(q) = 0, (1.50)

subject to the initial condition

q(x, 0) = q0(x) =

{
ql if x < 0,
qr if x > 0,

where ql and qr are constant. When the flux function f(q) is convex, two solutions are possible de-
pending on these constants:
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• rarefaction waves,

• shock waves.

Let us start with rarefactionwaves. The governing equation (1.50) is invariant to the transformation
x → αx and t → αt. A solution can thus be sought in the form q(ξ) with ξ = x/t. Substituting this
form into Eq. (1.50): (

f ′(q(ξ))− ξ
)
q′ = 0.

Apart from the trivial solution q = 0 (note that it does not satisfy the initial condition), the solution is

q(x, t) = f ′(−1)(ξ)

where f ′(−1) is the inverse of f ′. The whole solution is the piecewise continuous function:

q(x, t) =


ql if x

t
≤ f ′(ql),

f ′(−1)(ξ) if f ′(ql) ≤
x

t
≤ f ′(qr)

qr if x

t
≥ f ′(qr).

Let us now consider a shock wave. It position is x = σ(t) = σ̇t. The Rankine–Hugoniot equation
(1.43) gives Jf(q)K = σ̇JqK. The whole solution is:

q(x, t) =

{
ql if x < σ̇t,
qr if x > σ̇t.

The shock velocity σ̇ is given by:

σ̇ =
Jf(q)KJqK =

f(ql)− f(qr)

ql − qr
.

Let us summarise the two possible solutions (see Fig. 1.4): Recall that when f ′′ > 0, the celerity
c(q) = f ′(q) is an increasing function of q, which is also the slope of the characteristic curves (straight
lines):

• qr < ql. The two families of characteristic curves cross at any time t > 0. The shock wave moves
at speed c(qr) < σ̇ < c(ql). This condition is called the Lax condition, which defines whether a
shock is physically admissible.

• qr > ql, c(qr) > c(ql). At time t = 0, the two families of characteristic curves fan out. Equation
ξ = f ′(U(ξ)) is an implicit solution over the interval c(qr) > ξ > c(ql).

1.3 Nonlinear systems

Let us now consider the nonlinear case for one-dimensional problems in its conservative and non-
conservative forms

∂

∂t
q +

∂

∂x
f(q) = S ⇔ ∂

∂t
q +A(q) · ∂

∂x
q = S, (1.51)

where q is a vector withm components representing the unknowns, f is the flux function,A = ∇f is
its Jacobian (the gradient involves the derivatives with respect to the q components). We assume that
A ism×mmatrix whose eigenvalues λi are assumed to be real and distinct over a certain domain—like
for the linear case.
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(a)
(b)

Figure 1.4 (a) When qr > ql, the solution is a shock wave x = σ̇t with σ̇ = Jf(q)K/JqK separating the
two constant states ql and qr . The coloured area shows the region in which characteristic lines intersect.
(b) When qr < ql, the solution is a rarefaction wave. The characteristic curves are the straight lines
x = mtwith c(qr) > m > c(ql). The coloured area shows the region in which the characteristic curves
fan out.

1.3.1 Riemann variables

The computational strategy closely follows the one taken for the linear case. It relies on the concept of
differential invariants. Let us illustrate this concept form = 2. The unknown vector q has components
(q1, q2). We seek a new variable s = {s1, s2} such that:

v1 · dq = µ1ds1,

v2 · dq = µ2ds2,

where µi are the integrating factors such that dsi are exact differentials. By expanding the differential
ds1, we get:

µ1ds1 = µ1

(
∂s1
∂q1

dq1 +
∂s1
∂q2

dq2
)

= v11dq1 + v12dq2.

Upon identification with the former equation, we deduce:

∂s1
∂q1

=
v11
µ1

,

and
∂s1
∂q2

=
v12
µ1

.

We deduce the governing equations for s1 and µ1. By dividing the two equations above, we obtain:

∂s1
∂q1

=
v11
v12

∂s1
∂q2

, (1.52)

while the integrating factor is obtained by applying the Schwarz theorem

∂

∂q1

v12
µ1

=
∂

∂q2

v11
µ1

.
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We have seen above that the left and right eigenvectors are orthogonal two by two, which means here
that v1 ·w2 = 0 (that is, v12 = w21 and −v11 = w22). We can then transform Eq. (1.52) into

w21
∂s1
∂q1

+ w22
∂s1
∂q2

= 0 ⇒ w2 · ∇s1 = 0. (1.53)

Caveat. Later, we will introduce Riemann invariants rk (see § 1.3.3). These invariants will be
defined as wk · ∇rk = 0. Although they are closely related to the Riemann variables sk, they differ
from each other: we have s1 = r2 and s2 = r1.

Equation (1.52) can be cast in the form

dq1
v12

=
dq2
v11

=
ds1
0

,

whose integration provides s1. Equation (1.51) leads to:

v1 ·
dq
dt

∣∣∣∣
x=X1(t)

+ v1 · S = 0,

where the characteristic curve x = X1(t) satisfies dX1/dt = λ1. It is called the 1-characteristic. We
have:

µ1
ds1
dt

∣∣∣∣
x=X1(t)

= v1 · S.

Similarly for s2:

µ2
ds2
dt

∣∣∣∣
x=X2(t)

= v2 · S.

The compact form of Eq. (1.51) after the change of variable is:

ds
dt

∣∣∣∣
s=X(t)

= L · S along dX
dt = Λ, (1.54)

where L = [v1, v2]
T , Λ = {λ1, λ2} and s = {s1, s2}.

1.3.2 Shock wave and the Lax entropy condition

The Rankine–Hugoniot equation holds for systems of nonlinear hyperbolic equations (1.51). The shock
velocity is

σ̇ =
Jf(q)KJqK . (1.55)

This provides a system ofm equations. By eliminating σ̇, we obtainm−1 equations, and thus there are
at leastm−1 curves in the phase plane, called theHugoniot locus. These equations may, however, define
more than m − 1 one-parameter family of curves, as will be illustrated below with the Saint-Venant
equations (see § 1.4).

We have seen in §,1.2.3 that a shock wave occurs when the characteristic curves intersect. In other
words, for a right-going shock, the characteristic speed (which is also the eigenvalue) on the left is
higher than the one on the right. It can also be shown by considering energy balance or by regularising
the homogenous equation that only some characteristic speeds lead to physically admissible solutions.
Overall, the constraint on the characteristic speed leads to the Lax entropy condition: a shock exists
between two states ql and qr if there is one index k for which the shock velocity σ̇ satisfies:

λk(ql) > σ̇ > λk(qr), (1.56)
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whereas for the other indices, the characteristic curves do not cross the shock curve:

λi(ql) < σ̇ and λi(qr) < σ̇ for i < k, (1.57)

and
λi(ql) > σ̇ and λi(qr) > σ̇ for i > k, (1.58)

When working on the Saint-Venant equations (see § 1.4), we will see how to derive these relations by
generalising what has been done with one-dimensional equations in §,1.2.3.

If we take the limit of JqK → 0 around a state q∗, then

limJqK→0
Jf(q)K = ∇f(q∗) · JqK.

Making use of the Rankine–Hugoniot equation (1.55), we find that

∇f(q∗) · JqK = σ̇JqK,
which shows that shock waves in the close vicinity of q∗ are right eigenvectors of the Jacobian∇f(q∗).
In the next section, we will find that rarefaction waves are tangent to the right eigenvector field. As a
consequence, in the close vicinity of q∗, rarefaction and shock waves are tangent to the same integral
curves. This remarkable property will be used by approximate Riemann solvers, which substitute the
Jacobian∇f(q∗) by a constant matrix (see § 2.4.2). Figure 1.5 shows an example with the shallowwater
equations.

1.3.3 Rarefaction wave

Definition of simple waves

Before defining rarefaction waves for nonlinear hyperbolic systems, we need a more general concept
that extends the concept of simple wave seen in § 1.1.5. A simple wave is a special solution to the
homogeneous hyperbolic system

∂

∂t
q +A(q) · ∂

∂x
q = 0 (1.59)

where the solution q(x, t) is sought in the form

q(x, t) = q(ξ(x, t)),

where ξ(x, t) is a function of x and t. If we substitute q(x, t) with q(ξ) into Eq. (1.59), we then obtain

∂ξ

∂t
q′ +

∂ξ

∂x
A(q) · q′ = 0.

It is possible to solve this equation if we further assume that a simple wave is the integral curve of one
of the right eigenvectors wk, or in other words, we assume that q′ and wk are collinear:

d
dξq = αwk, (1.60)

where α is a proportionality factor (possibly a function of ξ). When q is an integral curve of wk, the
function ξ(x, t) satisfies the equation

∂ξ

∂t
+ λk(q)

∂ξ

∂x
= 0. (1.61)
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Note that this equation is a nonlinear hyperbolic equation and thus may develop discontinuities even
though ξ(x, t) is initially continuous.

Note that the characteristic form of Eq. (1.61) is

dξ
dt = 0 along the curve dx

dt = λk(q),

which implies that ξ is constant along the characteristic curve x′(t) = λk(q(ξ)), but since the charac-
teristic speed λk(q(ξ)) is also constant, then the characteristic curves are straight lines. Along each of
these characteristic curves, q(ξ) is constant. A simple wave can be interpreted as a wave that carries
some constant information at a constant velocity.

If we assume that λk(q(x, 0)) is initially monotonically increasing in x at time t = 0, the charac-
teristic curves will not cross each other at later times, and thus a continuous solution will exist for all
time. In the opposite case, if λk(q(x, 0)) is locally decreasing in x at time t = 0, the wave undergoes
compression, and thus an initially smooth simple wave may compress to the point of forming a shock
in the region where the characteristic speed λk decreases. To determine whether the characteristic
speed λk is a monotonically increasing function, we can compute

d
dξ λk(q(ξ)) = ∇λk · q′. (1.62)

Since q′ is a right eigenvector ofA, q′ is collinearwith the right eigenvectorwk, and thus themonotonic
character is provided by the sign of ∇λk ·wk. When

∇λk ·wk ̸= 0 (1.63)

the characteristic speed is said to be a genuinely nonlinear field. When

∇λk ·wk = 0 (1.64)

for all q, the field is said to be linearly degenerate.

To sum up, we can define simple waves as curves q(ξ(x, t))where q is an integral curve of the right
eigenvector wk. The function ξ must satisfy the nonlinear advection equation (1.61). Characteristic
curves in the x − t plane are thus straight lines of slope λk(q(ξ)). A geometric interpretation is that
the curve q(ξ) is tangent to the vector field wk. Note that if we seek a function r(q) that remains
constant along this integral curve, then we recover the definition (1.52) of the Riemann invariant:

d
dξ r(q) = 0 ⇒ ∇r · q′ = 0,

and since q′ = αwk, then the invariance condition is:

∇r ·wk = 0. (1.65)

As indicated in § 1.3.1, this property gives an operational way of defining the k-Riemann invariant: it
is a function whose gradient is normal to the right eigenvector wk at each point q. In general, we
can find m−1 distinct k-Riemann invariants for each family k: the solution to wk · ∇rk = 0 gives m
equations, but eliminating ξ reduces by one the number of independent solutions (see the example of
the Saint-Venant equations in the next section).

Definition of rarefaction waves

A (centred) rarefaction wave is a particular case of simple wave for which ξ = x/t. The interest of
this special solution is obvious when considering that the governing equation (1.59) is invariant to the
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stretching group x → αx and t → αt. The function ξ is thus the similarity variable ξ = x/t. We are
seeking a similarity solution q = q(ξ). Substituting this form into Eq. (1.59) gives

−ξq′ +A · q′ = 0,

which shows that q′ is a right eigenvector of A, imposing ξ = λk and q′ collinear with the right
eigenvector wk.

The condition ξ = λk(q(ξ)) gives us the possibility to derive a formal definition of the integral
curve q(ξ). By differentiating this condition with respect to ξ, we obtain

1 = ∇λk · q′(ξ)

where the gradient ∇λk is obtained by differentiating the characteristic speed λk with respect to
q. Since q′(ξ) is collinear with the right eigenvector wk, there is a scalar α such that q′ = αwk.
Substituting this form in the equation above, we obtain

1 = α∇λk ·wk,

and we eventually deduce
α =

1

∇λk ·wk
,

and the integral curve thus satisfies the differential equation

q′(ξ) =
wk

∇λk ·wk
, (1.66)

whose solution is denoted by q̃.

The characteristics are straight lines x = mt, where m is a real factor satisfying ξl < m < ξr with
ξlλk(ql) and ξr = λk(qr). Equation (1.66) holds for ξl < ξ < ξr and satisfies the boundary conditions

q(ξl) = ql and q(ξr) = qr.

The rarefaction wave’s structure is then

q(x, t) =


ql if x/t ≤ ξ1,
q̃(x/t) if ξ1 ≤ x/t ≤ ξ2,
qr if x/t ≥ ξ2,

(1.67)

where
ξ1 = λk(ql) and ξ2 = λk(qr).

Since a k-rarefaction wave is a simple wave, the k-Riemann invariant given by (1.65) is constant along
this wave.
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1.4 Example: the Saint-Venant equations

1.4.1 Governing equations and characteristic form

For water waves over horizontal frictionless beds, the governing equations (called Saint-Venant or shal-
low water equations) are given by

∂h

∂t
+

∂hū

∂x
= 0 (1.68)

∂hū

∂t
+

∂hū2

∂x
+ gh

∂h

∂x
= 0, (1.69)

which can be cast in tensorial form (1.59) with:

q =

(
h
q

)
and A = f ′ =

(
0 1

−q2/h2 + gh 2q/h

)
, (1.70)

where h and q = hū denote the flow depth and momentum, g is gravity acceleration, and ū is depth-
averaged velocity. By integrating f ′ = A, we can determine the flux function f :

f =

 q
q2

h
+

1

2
gh2

 . (1.71)

The eigenvalues of the Jacobian matrix A are

λ1 = ū− c and λ2 = ū+ c, (1.72)

where c =
√
gh and the right eigenvectors are

w1 =

(
1

ū− c

)
and w2 =

(
1

ū+ c

)
. (1.73)

If we define the 1-Riemann variable s1 as ∇s1 ·w2 = 0 (see § 1.3.1), then s1 is the solution to
∂s1
∂h

+ (ū+ c)
∂s1
∂q

= 0 ⇔ dh
1

=
dq

ū+ c
=

ds1
0

.

Integrating the first pair of equations gives

dq = (ū+ c)dh ⇒ ūdh+ hdū = (ū+ c)dh.

After simplification and integration, we obtain

dū =

√
g

h
dh ⇒ ū = 2

√
gh+ a

where a is a constant of integration. As s1 is an arbitrary function of a, we select the simplest form and
thus set a = s1 = ū− 2

√
gh. The first Riemann variable s1 is defined as

s1 = ū− 2
√
gh. (1.74)

Similarly for the 2-variable s2, we find

s2 = ū+ 2
√
gh (1.75)

The Saint-Venant equations (1.68)–(1.69) are thus equivalent to
ds1
dt = 0 along dx

dt = λ1 = ū− c,

ds2
dt = 0 along dx

dt = λ2 = ū+ c.
(1.76)
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1.4.2 Energy

By multiplying the momentum balance equation (1.69) by the depth-averaged velocity ū, we can derive
an equation for the energy (per unit mass):

ū
∂hū

∂t
+ ū

∂

∂x

(
hū2 + g

h2

2

)
= 0. (1.77)

Using Leibniz product role, we have

ū
∂hū

∂t
= ū

∂hū2

∂t
− hū

∂ū

∂t
.

To determine the last term on the right side of the momentum balance equation (1.69) in non-
conservation form

∂ū

∂t
+ ū

∂ū

∂x
+ g

∂h

∂x
= 0.

Equation (1.77) becomes

∂hū2

∂t
+ ū

∂

∂x

(
hū2 + g

h2

2

)
+ hū2

∂ū

∂x
+ ghū

∂h

∂x
= 0. (1.78)

The idea is to put the equation in conservative form. By rearranging the terms in Eq. (1.78),we obtain

∂hū2

∂t
+

∂

∂x

(
hū3

)
+ 2ghū

∂h

∂x
= 0. (1.79)

We can express the flow-depth gradient as follows

2ghū
∂h

∂x
= 2g

(
∂h2ū

∂x
− h

∂hū

∂x

)
.

From the mass balance equation (1.68), we get

h
∂hū

∂x
= −1

2

∂h2

∂t
.

Substituting this equation into Eq. (1.79), we eventually arrive at the energy balance equation

∂

∂t

(
1

2
hū2 +

1

2
gh2
)
+

∂

∂x

(
1

2
hū3 + gh2ū

)
= 0. (1.80)

This equation can be cast in the generic form

∂E

∂t
+

∂F

∂x
= 0.

where the total energy E comprises kinetic and hydrostatic contributions:

E =
1

2
hū2 +

1

2
gh2 and F =

1

2
hū3 + gh2ū.

This equation is associated with a Rankine–Hugoniot that describes the energy jump across a hydraulic
jump, which should be JF K − σ̇JEK = 0. (1.81)

There is a consensus to state that energy is not conserved across a discontinuity, but should decrease
because of internal energy dissipation (Rayleigh, 1914; Stoker, 1957; Whitham, 1974; Antuono, 2010;
Richard & Gavrilyuk, 2013; Kalisch et al., 2017; Paulsen & Kalisch, 2020). Let us define the energy jump

∆E = JF K − σ̇JEK. (1.82)
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Energy should be dissipated across a jump, which implies the following inequality

∆E < 0, (1.83)

which can be regarded as the equivalence of the entropy condition in gas dynamics. The difference JEK
must be calculated by considering that the flow goes from left to right. The definition of total energy
E in Eq. (1.82) can be simplified a great deal. We need to introduce the relative velocity

vr = ur − σ̇ and vl = ul − σ̇,

and the mass flux across the discontinuity x = σ(t)

ṁ = hlvl = hrvr (1.84)

which is the Rankine–Hugoniot equation (1.89) expressed in the frame attached to the discontinuity (see
below). From the Rankine–Hugoniot equation (1.89) associated with momentum balance, we obtain

hlvl(vr − vl) = −1

2
g(h2r − h2l ), (1.85)

and thus by solving Eqs (1.84)–(1.85), we deduce the relationship between relative velocities and flow
depths

v2l =
g

2

hr
hl

(hl + hr) and v2r =
g

2

hl
hr

(hl + hr). (1.86)

With these notations, we can express the total energy jump across the discontinuity (1.82)

∆E = JF K − σ̇JEK,
=

s
1

2
hū2v

{
+

s
gh2ū− σ̇

2
gh2

{
,

=

s
1

2
ṁū2

{
+

s
1

2
gh2(ū+ v)

{
,

=

s
1

2
ṁ(v + σ̇)2

{
+

s
1

2
gh2(2v + σ̇)

{
,

= ṁ

s
1

2
v2 + gh

{
,

which finds an easy interpretation: ∆E is the jump in the quantity Ψ = ṁ(12v
2 + gh) representing

the product of the mass flux ṁ and head 1
2v

2 + gh (per unit mass). By using the relations (1.85), we
eventually find

∆E = −ṁg
(hr − hl)

3

4hlhr
. (1.87)

The inequality (1.83) implies that

∆E < 0 ⇒
{

if ṁ > 0, then hr > hl,
if ṁ < 0, then hr < hl.

(1.88)

If this inequality is not satisfied, then the shock is not physically admissible.

1.4.3 Shock wave

From the Rankine–Hugoniot equation (1.55), we can determine the shock velocity and its features:

σ̇

s
h
q

{
=

uv q
q2

h
+

1

2
gh2

}~ . (1.89)
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Let us determine the Hugoniot locus, that is, the locus of points that are connected to a given point
(h∗, q∗) in the phase plane and for which the Rankine–Hugoniot equation (1.89) is satisfied. The mass
balance equation of Eq. (1.89) leads to

σ̇ =
q − q∗
h− h∗

. (1.90)

Substituting this relationship into the momentum balance of Eq. (1.89) leads to the equation

q − q∗ =
h− h∗
q − q∗

(
q2

h
+

1

2
gh2 − q2∗

h∗
− 1

2
gh2∗

)
.

The solution to this quadratic equation is

q(h|h∗, q∗) =
h

h∗
q∗ ± (h− h∗)

√
1

2
g
h

h∗
(h+ h∗).

This equation defines two curves:

• The 1-shock curve

q(h|h∗, q∗) =
h

h∗
q∗ − (h− h∗)

√
1

2
g
h

h∗
(h+ h∗). (1.91)

• The 2-shock curve

q(h|h∗, q∗) =
h

h∗
q∗ + (h− h∗)

√
1

2
g
h

h∗
(h+ h∗). (1.92)

From Eq. (1.90), we deduce that the shock moves at the velocity

σ̇ = u∗ ±
√

gh
h∗ + h

2h∗
. (1.93)

Figure 1.5 shows the two shock curves issuing from point P with coordinate (h∗, q∗) = (2, 1). One
remarkable property is that at point P , the show curves are tangent to the eigenvectors wi (i = 1, 2)
of the Jacobian matrix A. Indeed, in the limit q → q∗, the Rankine–Hugoniot equation (1.55) can be
linearised

σ̇JqK = f ′(q∗) · JqK (1.94)
= A(q∗) · JqK, (1.95)

which shows that in this limit, JqK is an eigenvector ofA, and thus is collinear to eitherw1 orw2. As a
consequence, rarefaction curves are also tangent to the shock curves at point P . This property is used
in numerical algorithms (see Chap. 2).

Physical admissibility based on energy balance

Not all points on the shock curves are physically admissible. We have seen that a shock is said to be
physically admissible when it dissipates energy. If it creates energy, it is not admissible. This condition
has been called the entropy condition. One way of looking at the physical relevance of the solution is
to compute the energy change across the shock. The energy jump is given by Eq. (1.87):

∆E = ṁ

s
1

2
v̄2 + gh

{
= −ṁg

(hr − hl)
3

4hrhr
,
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Figure 1.5Hugoniot locus of all points connected to point P with coordinate (h∗, q∗) = (2, 1) through
the 1-shock curve (1.91) or 2-shock curve (1.92). The red curve shows the 1-shock wave (1.91), while
the blue curve shows the 2-shock wave (1.92). The thin lines show the contour plot of the Riemann
invariants r1 and r2 given by Eqs. (1.74) and (1.75), respectively. (a) Curves in the (h, q = hū) plane.
(b) Curves in the (h, ū) plane.

where v = u− σ̇ is the relative velocity and ṁ = hlvl = hrur is the mass flux across the discontinuity
x = σ(t). Shocks are physically admissible if

∆E < 0.

The sign of ∆E depends on the mass flux ṁ and the difference hr − hl. To determine the sign of ṁ
depending on the left and right states, we need to do some algebraic manipulations. Let us note that
the shock speed (1.90) can be cast in the following form

σ̇ =
hrur − hlul
hr − hl

,

=
hr(ur − ul) + (hr − hl)ul

hr − hl
,

=
JuKJhKhr + ul,

and thus, we deduce
vl = ul − σ̇ = −JuKJhKhr.

Similarly for the relative velocity vr , we have

σ̇ =
ur(hr − hl) + (ur − ul)hl

hr − hl
,

=
JuKJhKhl + ur,

and thus, we deduce
vr = ur − σ̇ = −JuKJhKhl.
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As shown by Fig. 1.6, we consider a point P which can be the left or right state. For each possibility,
we seek the Hugoniot loci of states that are physically admissible. To that end, we determine the sign
of∆E by looking at the sign of ṁ = hlvl (or ṁ = hrvr) and that of hr−hl. For each considered point,
we can split the plane into four quadrants, and evaluate the sign of ṁ and hr − hl. The solid lines in
Fig. 1.6 show the parts of the 1- and 2-shock curves for which∆E < 0, whereas the dashed lines show
the non-physical parts (∆E > 0).
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Figure 1.6 Determination of the admissible states. (a) When the left state (hl, ul) is fixed, we look for
which part of the curve the relationship ∆E < 0 is satisfied. (b) When the right state (hr, ur) is fixed,
we look for which part of the curve the relationship ∆E < 0 is satisfied. The red curve shows the
1-shock wave (1.91), while the blue curve shows the 2-shock wave (1.92).

Physical admissibility based on regularisation

Like for one-dimensional problems seen in § 1.2.2, we consider the regularised version of the Saint-
Venant equation by a adding a viscous term

∂

∂t
q +

∂

∂x
f(q) = µ

∂2

∂x2
q (1.96)

where µ is the viscosity (µ > 0 and we will take µ → 0) and

q =

(
h
q

)
and f =

 q
q2

h
+

1

2
gh2

 .

We are seeking a travelling-wave solution the regularised Saint-Venant equations (1.96)

q(x, t) = U(ξ) with ξ =
x− σ̇t

µ
(1.97)

where σ̇ is the wave velocity given by the Rankine–Hugnoniot equation (1.89), and U satisfies the
boundary conditions {

U → ql when ξ → −∞,
U → qr when ξ → +∞.

(1.98)
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Substituting the form (1.97) into the regularised Saint-Venant equations (1.96) gives

−σ̇
d
dξU +

d
dξf(U) =

d2
dξ2U ,

which, after integration and determining the constant of integration from the boundary conditions
(1.98), yields

d
dξU = V (U) = −σ̇(U − ql) + f(U)− f(ql) (1.99)

= −σ̇(U − qr) + f(U)− f(qr). (1.100)

We note that ql and qr are equilibrium points of V (U). To determine the behaviour near these points,
we linearise V (U). For instance, near ql, we have to first order

V (U) = (−σ̇1+A) · (U − ql) = B · (U − ql)

where the matrix B (evaluated at ql)

B = A− σ̇1 =

[
−σ̇ 1

gh− q2

h2 2 q
h − σ̇

]

has the eigenvalues −σ̇ + ūl ±
√
ghl or, written differently, −σ̇ + λi(ql). Similarly, near qr , we have

to first order
V (U) = (−σ̇1+A) · (U − qr) = B · (U − qr)

where the matrix B is now evaluated at qr and has the eigenvalues −σ̇ + λi(qr).

We will show that travelling wave solutions to the regularised Saint-Venant equations exist only if
we constrain the eigenvalues of B. Here we provide a simple proof based on the expected behaviour
of the solutions in the phase plane; the reader is referred to technical books for more formal proofs
(Smoller, 1982; Holden & Risebro, 2015). Let us first consider the 1-shock curve connecting the left (L)
and right (R) states and associated with the eigenvalue η1− σ̇+λ1. For ξ → −∞, the integral curve of
Eq. (1.97) starts from L. When seeking local solutions to Eq. (1.97) near L in the formU = ql +U0e

η1ξ

(with U0 the initial condition which must be collinear to the eigenvector of B(ql) associated with the
eigenvalue η1), then the condition η1 > 0 at L must be met for the left boundary condition (1.98) to be
satisfied. As η2 > η1, then we deduce that the second eigenvalue is also positive at L: η2 > 0. We then
infer the conditions

σ̇ < λ1(ql) and σ̇ < λ2(ql) (1.101)

As the two eigenvalues η1 and η2 are positive, the left state L is a node (source). For the same reason,
when looking at the local behaviour near R by seeking solutions in theU = qr+U0e

η1ξ when ξ → ∞,
then we must have η1 < 0 at R, and thus

σ̇ < λ1(ql).

The right state R must be a saddle point to prevent an integral path issuing from L by (being tangent to
the second eigenvector at L) from reaching R. This implies that the second eigenvalue must be positive
at R. In the end, we thus have the conditions

σ̇ > λ1(qr) and σ̇ < λ2(qr) (1.102)

Figure 1.7(a) shows a simplified phase plane where the integral path (also called here a heteroclinic
orbit) connects the source point L to the saddle point R.
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(a)

(b)

Figure 1.7 Sketch of the phase plane and the behaviour near the left (L) and right (R) states. (a) When
considering the 1-shock curve, the left state is a node (source) and the right state is a saddle point. (b)
When considering the 2-shock curve, the left state is a saddle point and the right state is a node (sink).
The grey line shows the heteroclinic orbit connecting the left and right states.

Recombining Eqs. (1.101) and (1.102), we deduce that a travelling wave (mimicking the 1-shock
wave) exists only when the Lax condition is satisfied

λ1(qr) < σ̇ < λ1(ql), (1.103)
σ̇ < λ2(ql) and σ̇ < λ2(qr). (1.104)

We could reiterate the reasoning for the 2-shock curve. In that case, we obtain that the left state
L must be saddle point whereas the right state R must be a node (sink). A travelling wave (mimicking
the 2-shock wave) exists only when the Lax condition is satisfied:

λ2(qr) < σ̇ < λ2(ql), (1.105)
σ̇ > λ1(ql) and σ̇ > λ1(qr). (1.106)

Figure 1.7(b) shows the simplified phase plane for the 2-shock curve.

Example

Figure 1.8 shows an example of shocks between two states ql = (hl, ql) = (2, 1) and qr = (hr, qr) =
(2,−0.436). The 1-characteristics x = x0 + λ1t intersect each other, and thus there is a 1-shock
curve separating the two states. The characteristics are parallel straight lines in each wedge where q is
constant.
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Figure 1.8 Example of Riemann problemwith a 1-shock curve as the solution. Left state: ql = (hl, ql) =
(2, 1). Right state: qr = (hr, qr) = (2,−0.436). (a) Initial depth profile. (b) Initial velocity profile. (c)
Characteristic diagram. (d) Phase plane.

1.4.4 Rarefaction wave

Let us recall that a rarefaction wave is a special case of simple waves, which are defined as integral
curves of right eigenvectors. There are thus as many rarefaction waves as right eigenvectors, and these
waves are labelled as k-waves when they are associated with the right eigenvectorwk. A k-rarefaction
wave is the similarity solution q(ξ) (with ξ = x/t) to the governing equation (1.59) (see § 1.3.3). The
characteristic curves are straight lines ξ = x/t = m where the slope m ranges from λ(ql) to λ(qr).
The k-Riemann variable rk defined by Eq. (1.65) is constant along the k-rarefaction wave.

Riemann invariants

The k-Riemann variable rk is defined by Eq. (1.65) (∇rk ·wk = 0). We will show here that it can also
be calculated by using the properties of simple waves.

Let us start with the integral curve of an eigenvector w1. Integrating Eq. (1.60) with the definition
of the right eigenvector w1 given by Eq. (1.73) gives

d
dξ

(
h
q

)
=

(
1

q/h−
√
gh

)
. (1.107)



1.4 Example: the Saint-Venant equations 27

The first equation tells us that h′ = 1, and thus we obtain h = ξ + a. We assume that a = 0 such that
ξ and h coincide. The second equation then becomes

dq
dh = q/h−

√
gh. (1.108)

Let us assume that at h = h∗, q = q∗ = h∗ū∗. Integrating this equation gives

q(h) = h

(
q∗
h∗

+ 2
√
gh∗ − 2

√
gh

)
= hū∗ + 2h

(√
gh∗ −

√
gh
)
. (1.109)

Expressed in terms of velocity, this equation is equivalent to

ū(h) + 2
√
gh = ū∗ + 2

√
gh∗,

and we then deduce that the quantity
r1 = ū+ 2

√
gh (1.110)

is constant along the 1-rarefaction wave. This is the 1-Riemann invariant.

Similarly, we can calculate the 2-rarefaction wave associated with w2, and we obtain

q(h) = h

(
q∗
h∗

+ 2
√
gh∗ − 2

√
gh

)
= hū∗ + 2h

(
−
√
gh∗ +

√
gh
)
. (1.111)

The 2-Riemann invariant is
r2 = ū− 2

√
gh. (1.112)

Notes:

1. The equations used for characterising the simple waves are not sufficient to determine the struc-
ture of the rarefaction wave. Indeed, the k-rarefaction wave is defined from Eq. (1.66) as
q′ = αwk where α = (∇λk ·wk)

−1, but in the calculations just above, we integrated q′ = αwk

with α = 1. This simplified the calculation of rk but did not allow us to derive the rarefaction
wave’s exact structure.

2. The 1-Riemann variable s1 = ū−2
√
gh used in the characteristic form (1.76) of the Saint-Venant

equations is the 2-Riemann invariant r2 = ū − 2
√
gh (as indicated in § 1.3.1). Similarly, the 2-

Riemann variable s2 matches the 1-Riemann invariant.

Rarefaction wave equation

We use the formal definition (1.66) of the rarefaction wave given in § 1.3.3

q′(ξ) =

(
h′

q′

)
=

w1

∇λ1 ·w1
= −2

3

√
h

g

(
1

ū− c

)
(1.113)

since
∇λk ·w1 =

(
−ū/h− c/2

1/h

)
·
(

1
ū− c

)
= −3

2

√
g

h
= −3

2

c

h
.

As h > 0, the scalar product∇λk ·w1 is always negative, and the 1-characteristic is genuinely nonlinear
field. The first equation

h′ = −2

3

√
h

g
⇒ h(ξ) =

(3a− 2ξ)2

36g
, (1.114)
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where a is a constant of integration. Since the boundary condition imposes h = hl at ξ = λl =
ul −

√
ghl, we have

3a = 2ul + 4
√

ghl,

and similarly for the right boundary condition, we have

3a = 2ur + 4
√

ghr,

which is possible only if
ur + 2

√
ghr = ul + 2

√
ghl, (1.115)

or in other words, if the Riemann invariant r1 is constant. Using this result in Eq. (1.114), we finally
obtain:

h(ξ) =
(ur + 2

√
ghr − 2ξ)2

9g
=

(ul + 2
√
ghl − 2ξ)2

9g
(1.116)

The second equation is
q′ = −2

3
(ū− c)

h

c
.

Formally, we could solve this equation by substituting h with the solution h(ξ) found previously. This
leads to intricate calculations. Note first that q can be determined directly without solving any equation
by recalling that the 1-Riemann invariant is constant, and thus q/h + 2

√
gh is a constant. Otherwise,

we can integrate the equation above by making a change of variable q(ξ) → q(h) and making use of
Eq. (1.114):

q′ =
dq
dξ =

dq
dh

dh
dξ = −2

3

√
h

g

dq
dh,

and thus
dq
dh =

q

h
−
√
gh ⇒ q(h) = h(a− 2

√
gh),

where a is a constant of integration. The boundary conditions impose that

a = ul + 2
√
ghl = ur + 2

√
ghr.

This leads to the desired result.

Graphical representation

Figure 1.9(a) shows the phase portrait of Eq. (1.108) and one integral curve (1.109) (in red). The black
curves show the vector fieldw1, and the red curve shows one 1-rarefaction wave (integral curve ofw1)
associated with the initial condition q∗(h∗) = 1 for h∗ = 1. The 1-rarefaction wave is the contour line
(or level curve) of r1: we have r1 = ū∗ + 2

√
gh∗ = 3 (when we take g = 1 m·s−2).

Figure 1.10(a) shows one integral curve (related to r1 = 2) and the contour lines of the eigenvalues.
As the field is genuinely nonlinear, the characteristic speed λ1 varies monotonically along any integral
curve. If we take the decreasing part of the integral path (red curve), we see that the eigenvalue λ1

decreases when one goes from left to right. This has important consequences to determine which
part of the rarefaction waves is physically admissible. Let us assume that we start from a left state
ql = (hl, ql) and we seek where a point q∗ = (h∗, q∗) connected to the left state lies on the rarefaction
wave. As λ1(ql) < λ1(q∗), the physically admissible part of the integral path is the one along which
λ1 increases.
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Figure 1.9 Phase portrait (a) associated withw1 (q′(h) = q/h−
√
gh). (b) associated withw2 (q′(h) =

q/h+
√
gh). The red curves show the integral curve (a) q(h) = hū∗+2h

(√
gh∗ −

√
gh
)
(1-rarefaction

wave) with h∗ = 1 and q∗ = 1, and (b) hū∗ + 2h
(√

gh∗ +
√
gh
)
(2-rarefaction wave). We take g = 1

m·s−2.
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Figure 1.10 (a) λ = −2.5, 1, 0.5. (b) λ = −1, 2.5, 0.5. The red curve shows one 1-rarefaction and
2-rarefaction waves (here r1 = 2 and r2 = −2) whereas the blue curves shows the contour lines for
the eigenvalues λ1 and λ2.
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Figure 1.11 (a) 1-rarefaction wave issuing from the left state. (a) 2-rarefaction wave connecting to the
right state. The solid lines show the physically admissible states, whereas the dashed lines show the
part of the rarefaction wave that is not physically admissible
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1.4.5 General solution to the Riemann problem

Governing equations

We are now armed to work out the general solution to the Riemann problem for the Saint-Venant
equations

∂

∂t
q +

∂

∂x
f(q) = 0 ⇔ ∂

∂t
q +A(q) · ∂

∂x
q = 0, (1.117)

where the unknown vector and the Jacobian matrix A are

q =

(
h
q

)
and A = f ′ =

(
0 1

−q2/h2 + gh 2q/h

)
, (1.118)

and the flux function f is:

f =

 q
q2

h
+

1

2
gh2

 . (1.119)

The initial condition is
q(x, 0) =

{
ql for x < 0,
qr for x > 0.

(1.120)

Unless the left and right states can be connected by a single rarefaction or shock curve, the solution
usually involves a combination of two waves, usually a rarefaction and a shock waves, but sometimes,
depending on the particular values of ql and qr , two shocks or two rarefaction waves. One of these
waves connects the left state ql with an intermediate state q∗, while the other connects q∗ to qr . Note
that possibly, the intermediate state corresponds to the dry state h = 0. The problem thus lies in the
calculation of this intermediate state q∗ and the type of connecting waves.

Computational strategy

We have seen that

• Shocks have to satisfy the Lax entropy condition (1.56)–(1.58), which imposes that a 1-shock
wave connecting the left and right states has to satisfy

λ1(qr) < σ̇ < λ1(ql), (1.121)
σ̇ < λ2(ql) and σ̇ < λ2(qr). (1.122)

The Lax condition for a 2-shock wave is

λ2(qr) < σ̇ < λ2(ql), (1.123)
σ̇ > λ1(ql) and σ̇ > λ1(qr). (1.124)

• If there is an intermediate state q∗, the wave from ql to q∗ move more slowly than the wave
from q∗ to qr . As a consequence, the wave issuing from the left state ql is necessarily a 1-wave,
whereas the wave issuing from the intermediate state q∗ is a 2-wave.

Let us now use this information to calculate the features of the 1-shock wave connecting ql to q∗.
Equation (1.121) imposes

ū∗ −
√
gh∗ < σ̇ < ūl −

√
ghl,



32 Chapitre 1 Hyperbolic equations

and recalling that the shock velocity can also be expressed [see Eq. (1.93)] in the form

σ̇ = u∗ −
√
ghl

h∗ + hl
2h∗

= ul −

√
gh∗

h∗ + hl
2hl

.

we find that the Lax entropy condition implies

h∗ > hl (1.125)

for the 1-shock wave. By using the same procedure for the 2-shock wave, we deduce that the Lax
entropy condition for this wave is

hr > h∗ (1.126)

These conditions are consistent with the criteria established in § 1.4.4 (see also Fig. 1.11).

We define two functions ϕl and ϕr:

ϕl(h) =


ul + 2(

√
ghl −

√
gh) if h < hl

ul − (h− hl)

√
g

2

(
1

hl
+

1

h

)
if h > hl

(1.127)

and

ϕr(h) =


ur − 2(

√
ghr −

√
gh) if h < hr

ur + (h− hr)

√
g

2

(
1

hr
+

1

h

)
if h > hr

(1.128)

The intermediate state is found by solving

ϕl(h∗) = ϕr(h∗). (1.129)

Given that we know the depth h, the function ϕl yields the value of the velocity u such that the state
(h, hu) is connected to the left state (hl, hlul) by a 1-wave (rarefaction or shock), whereas ϕr provides
the value of the velocity u such that the state (h, hu) is connected to the right state (hr, hrur) by a
2-wave (rarefaction or shock).

Example

Let us consider the following example (wet dam break) with ql = (4, 0) and qr = (1, 0). Figure 1.12(a)
shows the initial depth profile, and Fig. 1.12(b) shows the characteristic lines emanating from the initial
condition. The 1-characteristic curves spread out, and thus there is apparently an empty wedge in the
left quadrant. This wedge will be occupied by a rarefaction wave (for this reason, we will refer to it
as the rarefaction fan). The 2-characteristic curves cross each other, which indicates the formation of
a shock wave in the right quadrant. From this inspection of the characteristic curves, we deduce that
the solution involves a 1-rarefaction wave and 2-shock wave.

We can determine the intermediate state q∗ = (h∗, h∗ū∗) that is connected to the left and right
states. We apply the computational strategy outlined above to calculate this state. We find h∗ =
2.207 m and ū∗ = 1.028 m/s. Figure 1.13 confirms that the 1-wave connecting ql to q∗ is a rarefaction
wave, whereas the 2-wave is a shock wave.

We can now plot the characteristic curves. Figure 1.14 shows the shock wave (black line)

x = σ̇t with σ̇ =
hrūr − h∗ū∗
hr − h∗

= 1, 88 m/s,
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Figure 1.12 We consider the following Riemann problem ql = (4, 0) and qr = (1, 0). (a) Flow depth
profile. (b) The solid lines refer to 1- and 2-characteristics related to the left state, while the dashed
lines refer to the right state. We use the following colour code: orange for the characteristic curves
x = x0 + λ1t, and grey for the characteristic curves x = x0 + λ2t.
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Figure 1.13 Example of solution with ql = (4, 0) and qr = (1, 0). The solid lines show shock waves,
while the dashed lines refer to the rarefaction waves.

and the rarefaction fan (orange lines) delineated by the two characteristic curves

x = λ1lt and x = λ1∗t,
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Figure 1.14 Solution to the dambreak problem ql = (4, 0) and qr = (1, 0). (a) 1-characteristic curves.
(b) 2-characteristic curves. The orange lines show the rarefaction fan that separates the 1-characteristic
curves issuing from the left and right states. The solid black line is the shock curve connecting the
intermediate and right states.

where λ1l = ūl −
√
ghl = −

√
ghl and λ1∗ = ū∗ −

√
gh∗. Figure 1.14(a) shows the 1-characteristic

curves. On the left of the rarefaction fan, they take the form

x = x0 + λ1lt,

where x0 is any position on the x-axis. On the right, they undergo a slight of direction when crossing
the shock curve. On the right of the shock curve, the 1-characteristic curves are

x = x0 + λ1rt,

while on the shock curve’s right, they have the form

x = x1 + λ1∗t,

where x1(x0) is set by the continuity with the 1-characteristic curves arriving from the region down-
stream of the shock curve. Indeed, the 1-characteristic curve crosses the 2-shock curve at time

σ̇t = x0 + λ1rt ⇒ t =
x0

σ̇ − λ1r
,

and thus x1(x0) = σ̇x0/(σ̇ − λ1r).

Figure 1.14(a) shows the 2-characteristic curves. On the left of the rarefaction wave, these curves
take the form

x = x0 + λ2lt.

When these curves move through the rarefaction wave, they are no longer straight lines. Their govern-
ing equation is

dx
dt = ū+

√
gh. (1.130)

In the 1-rarefaction fan, the depth and velocity are determined to within a constant of integration. First,
the Riemann invariant r1 is constant in the 1-rarefaction fan, and the constant is fixed by the boundary
condition on the left:

r1 = ū+ 2
√
gh = 2cl, (1.131)
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where cl =
√
ghl. Second, the 1-characteristic curves are straight lignes pivoting around the axis origin

x = λ1t = (ū−
√
gh)t. (1.132)

Solving Eqs. (1.131)–(1.132) for ū and h gives

ū =
2

3

(
cl +

x

t

)
and h =

1

9g

(
2cl −

x

t

)2
(1.133)

Substituting Eq. (1.133) into Eq. (1.130) and integrating

x = 2clt+ bt1/3, (1.134)

where b is a constant that will be determined by imposing the continuity between 2-characteristic
curves on both sides of the boundary x = λ1lt. On the right of the shock wave, the 2-characteristic
curves take the form

x = x0 + λ2rt.

Figure 1.15 shows the flow-depth and velocity profiles at time t = 0.5 s. The rarefaction and shock
waves are readily identifiable on the flow depth profile.
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Figure 1.15 Solution to the dambreak problem ql = (4, 0) and qr = (1, 0) at time t = 0.5 s (we set g
to 1 m/s2). (a) Flow depth profile. (b) Velocity profile.





CHAPTER2
Finite volume methods

2.1 General formulation

2.1.1 Finite-volume averaging

Let us consider a hyperbolic equation in one space dimension and in a conservative form

∂

∂t
q +

∂

∂x
f(q) = 0, (2.1)

where q is a vector with m components representing the unknowns and f is the flux function. We
consider a uniform grid over an interval [a, b] divided into N identical cells of size ∆x = (b − a)/N .
The cell centers are denoted by xi−1/2 (see Fig. 2.1):

xi = a+

(
i− 1

2

)
∆x.

Figure 2.1 Computational grid. The yellow-coloured area represents the computational domain [a, b],
while the green-coloured area show the extended domain for handling the boundary conditions. The
computational domain can be extended by including ghost cells (see § 2.10).

We define the cellCi = [xi−1/2, xi+1/2), centred around the cellxi andwhose bounds (or interfaces)
are xi±1/2 (see Fig. 2.2). Note that:

x−1/2 = a and xN+1/2 = b.

37
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Figure 2.2 Computational domain and grid in the x− t plane.

The time step is denoted by ∆t = tn+1 − tn. The computational domain is [a, b], but we will see that
we will need to extend it to handle boundary conditions (see § 2.10).

We integrate Eq. (2.1) over the cell Ci:∫ xi+1/2

xi−1/2

∂q

∂t
dx+ [f(q)]

xi+1/2
xi−1/2

= 0. (2.2)

Integrating this equation again over (tn, tn+1] gives:∫ xi+1/2

xi−1/2

(q(x, tn+1)− q(x, tn))dx+

∫ tn+1

tn

[f(q)]
xi+1/2
xi−1/2

dt = 0. (2.3)

We define the cell-averaged value of q at time tn:

Qn
i =

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn)dx, (2.4)

and a time-averaged flux

F n
i±1/2 =

1

∆t

∫ tn+1

tn

f(q(xi±1/2, t))dt. (2.5)

We can develop an explicit time-marching algorithm by rearranging Eq. (2.3) and introducing the time-
and grid-averaged variables

Qn+1
i = Qn

i − ∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
. (2.6)

2.1.2 Upwind method

Let us give an application example of (2.6) with the upwind method. The idea behind this method is
that for hyperbolic problems, information propagates in different directions and at different speeds. If
we know how these waves carrying information behave, then we can determine the flux F i±1/2. We
start with the simples case

∂q

∂t
+ ū

∂q

∂x
= 0, (2.7)

where ū > 0 is a constant. The time-averaged flux (2.5) is thus

Fn
i−1/2 =

1

∆t

∫ tn+1

tn

f(q(xi±1/2, t))dt = ūQn
i−1,



2.1 General formulation 39

since Qn
i−1 is constant along the characteristic xi−1 + ūt. As a consequence for the linear advection

problem, the first-order upwind method built from (2.6) is

Qn+1
i = Qn

i − ū∆t

∆x

(
Qn

i −Qn
i−1

)
, (2.8)

which looks like the finite-difference discretisation of Eq. (2.7) (one-sided first-order approximation).

This equation can be interpreted in (at least) two different ways, one focusing on space-averaging,
the other on time-averaging. First, let us assume that we have a piecewise constant approximation of
the solution q(x, t) to (2.7) at time tn as illustrated by Fig. 2.3. At time tn+1 = tn +∆t, the curve has
been shifted by ū∆t. We now calculate the value Qn+1

i by averaging the shifted function over the cell
Ci:

Qn+1
i =

1

∆x

(
(∆x− ū∆t)Qn

i + ū∆tQn
i−1,

)
(2.9)

which imposes ∆x− ū∆t > 0 for the averaging to make sense. This contraint on ∆t

0 ≤ ū∆t

∆x
≤ 1

is called the Courant-Friedrichs-Lewy condition (CFL). It can be checked that after rearrangement, Eq.
(2.9) leads to the upwind method (2.8).

Figure 2.3 Advection of a piecewise continuous function. At time t = tn, the function is piecewise
constant, with value Qn

i on cell Ci. At time tn+1, this function has been shifted by ū∆t. The value
Qn+1

i is obtained by space-averaging the shifted function on cell Ci. The problem can be interpreted
as the propagation of discontinuities originating from the cell boundaries xi−1/2. These discontinuities
form the wave Wi−1/2 = Qi −Qi−1.

Another interpretation given by LeVeque (2002) is the wave-propagation viewpoint. If we define
the jump

Wi−1/2 = Qn
i −Qn

i−1,

then Eq. (2.8) can be rewritten
Qn+1

i = Qn
i − ū∆t

∆x
Wi−1/2. (2.10)

The interpretation is the following: the wave Wi−1/2 moves at velocity ū. When it moves through Ci,
it changes the value ofQn

i by−Wi−1/2 at each point it passes (see Fig. (2.3)). Over the time step∆t, the
portion ū∆t/∆x has been affected by the wave, and thus the cell average Qn+1

i is given by Eq. (2.10).
This interpretation will be used in the wave-propagation form of Godunov’s method below.
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Note that the upwind method takes the form (2.8) when ū > 0. When ū < 0, the upwind method
leads to

Qn+1
i = Qn

i − ū∆t

∆x

(
Qn

i −Qn
i−1

)
, (2.11)

and the wave-propagation interpretation is

Qn+1
i = Qn

i − ū∆t

∆x
Wi+1/2, (2.12)

where Wi+1/2 = Qn
i+1 −Qn

i . It is possible to generalise the upwind method by posing

Qn+1
i = Qn

i − ∆t

∆x

(
ū+Wi−1/2 + ū−Wi+1/2

)
, (2.13)

where
ū+ = max(0, ū) and ū− = min(0, ū).

The flux approximation is
Fn
i−1/2 =

ū∆t

∆x

(
ū−Qn

i + ū+Qn
i−1

)
.

2.2 Godunov’s method for linear systems

Godunov’smethod has been amajor achievement in the field of hyperbolic equations, which has opened
up the way to modern finite-volume techniques (Godunov, 1959; Toro, 2001; LeVeque, 2002; Toro &
Garcia-Navarro, 2007; Guinot, 2010). It consists of three steps: reconstructing, evolving, and averaging.

1. Reconstruction. We assume that we can approximate the solution q(x, t) by a piecewise constant
function q̃ni (x, tn) = Qn

i for x ∈ Ci = (xi−1/2, xi+1/2). Note that to second order, we have

Qn
i =

1

∆x

∫ xi+1/2

xi−1/2

q̃(x, tn)dx,

=
1

∆x

∫ xi+∆x/2

xi−∆x/2

(
q̃(xi, tn) + (x− xi)

∂

∂x
q(xi, tn) +

(x− xi)
2

2

∂2

∂x2
q(xi, tn)

)
dx,

= q(xi, tn) +
∆x2
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∂2

∂x2
q(xi, tn).

Godunov’s method is a first-order accurate scheme. We can use higher-order reconstructions of
the approximate the function q(x, t) (e.g., a piecewise linear function with a nonzero slope in
each grid cell). See § 2.8.

2. Evolution. Using Eq. (2.6) or another method, we look at how the solution q̃n+1
i has evolved

from the previous state at time tn. This step amounts to solving Riemann problems at each cell
boundary xi±1/2.

3. Averaging. We average this function over each grid cell

Qn+1
i =

1

∆x

∫ xi+1/2

xi−1/2

q̃(x, tn+1)dx. (2.14)

We can piece together the Riemann solutions provided that the waves from two adjacent inter-
faces have not started to interact. This condition is usually met when the Courant–Friedrichs–
Lewy (CFL) condition is satisfied (no wave passes through more than one grid cell within ∆t):

cmax∆t

∆x
≤ 1, (2.15)

where cmax represents the largest wave speed over the computational domain.
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Godunov’s method was initially used to solve the Euler equations in gas dynamics (Godunov, 1959,
1962). The flux F n

i+1/2 was determined from the exact solution to the Riemann problem for the Euler
equations. Approximate Riemann solvers are used today because they are faster. Godunov’s method is
robust and stable when the CFL condition is met. When approximate solvers are used, this may not be
the case, and thus special care has to be paid to robustness and stability. Moreover, Godunov’s method
tends to smear out solutions near discontinuities. By using limiters, approximate Riemann solvers
deal more efficiently with discontinuities. They also build numerical solutions as linear combinations
of travelling discontinuities—they do not use rarefaction waves, which are therefore approximated as
discontinuities. Transonic waves1 may need more care.

The crux in Godunov’s method lies in the determination of the flux terms in Eq. (2.6). These fluxes
are defined by Eq. (2.5):

F n
i±1/2 =

1

∆t

∫ tn+1

tn

f(q(xi±1/2, t))dt.

When we solve a succession of Riemann problems, the integrand f is usually constant because either
the solution to the Riemann problem involves a rarefaction wave (in this case, the line x = xi−1/2

is a characteristic curve) or a shock wave (in that case, the shock wave separates two constant-state
domains). Therefore, in both cases, the value q is a constant that can be expressed as a function denoted
by q↓ by LeVeque (2002) of the left and right states:

q = q↓(Qn
i−1,Q

n
i ) (2.16)

and thus we can define the value taken by q at the interface xi−1/2 as

Qn
i−1/2 = q↓(Qn

i−1,Q
n
i ) (2.17)

and the flux at the interface xi−1/2:

F n
i−1/2 = f(q↓(Qn

i−1,Q
n
i )) = F(Qn

i−1,Q
n
i ) (2.18)

To sum up, we can implement Godunov’s method by following the three following steps:

1. Solve the Riemann problem at each interface xi−1/2 and derive the value q↓(Qn
i−1,Q

n
i ).

2. Compute the flux F n
i−1/2 using Eq. (2.18).

3. Update the cell values Qn
i by using the flux-differencing equation (2.6).

2.3 Wave decomposition for linear systems

2.3.1 Introductive example

In Clawpack, we will use a variant of Godunov’s method based on the wave decomposition seen in
Chapter 1 and close to the wave-propagation interpretation of the upwind method seen in § 2.1.2. There
are other strategies such as flux differencing (Toro, 2001; LeVeque, 2002; Guinot, 2010). The advantage of
wave decomposition over other approaches is that it can also be applied to non-conservative equations.

Let us illustrate how Clawpack proceeds with the flux estimation by considering a problem of
dimensionm = 3. Let us assume that we have three different eigenvalues such that λ1 < 0 < λ2 < λ3.
As shown by Fig. 2.4, from the node xi−1/2 emerge three characteristics xi−1/2+λit, which will create
three discontinuities in q̃ at time tn+1. Similarly, three characteristics are issued from xi+1/2+λit. The
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Figure 2.4Wave structure for the nodes xi−1/2 and xi+1/2. At time tn, we consider a series of Riemann
problems with q̃ni (x, tn) = Qn

i . We can compute q̃(x, t) the solution at later times by considering the
waves W i. The solution is given by Eq. (2.20). The next step is to average the value of q̃(x, tn+1) over
the interval [xi−1/2, xi+1/2] (coloured in yellow).

coloured segment in Fig. 2.4 is crossed by three waves: xi−1/2 + λ2t, xi−1/2 + λ3t, and xi+1/2 + λ1t.
The other waves will not cause any change to this segment.

Recall that in Chapter 1, we learned from Eq. (1.31) that the initial jump in the Riemann problem
at xi−1/2 can be decomposed into three waves:

Qi −Qi−1 =
m∑
k=1

W k,i−1/2, (2.19)

where W k,i−1/2 is collinear with the right eigenvectors: W k,i−1/2 = αk,i−1/2wk,i−1/2 where

α = L ·∆Qi−1/2

and
∆Qi−1/2 = Qi −Qi−1.

As explained in § 1.1.6 for linear hyperbolic systems, the solution is given by Eqs. (1.35)–(1.36), which
tells us that for the double Riemann problem considered here, we have

q̃ = Qn
i +W 1,i+1/2 −W 2,i−1/2 −W 3,i−1/2. (2.20)

Let us examine how these waves modify the value ofQi at time tn+1. If we consider the first wave,
we can see that it will modify the value of q over a fraction of the grid cell |λ1|∆t/∆x by the amount

|λ1|
∆t

∆x
W 1,i+1/2

relative to the initial value Qi (as λ1 < 0, we have to take its absolute value). Similarly, for the 2- and
3-waves, the value of q is changed over a fraction of the grid cell λ2∆t/∆x and λ3∆t/∆x, respectively,
by the amount

−λ2
∆t

∆x
W 2,i−1/2 − λ3

∆t

∆x
W 3,i−1/2.

1see Fig. 2.6 for a quick definition.
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If we sum the contributions, we obtain the averaged value of q̃(x, tn+1) over the interval
[xi−1/2, xi+1/2]:

Qn+1
i = Qn

i + |λ1|
∆t

∆x
W 1,i+1/2 − λ2

∆t

∆x
W 2,i−1/2 − λ3

∆t

∆x
W 3,i−1/2 (2.21)

= Qn
i − ∆t

∆x

(
λ2W 2,i−1/2 + λ3W 3,i−1/2 + λ1W 1,i+1/2

)
. (2.22)

2.3.2 General formulation

The result obtained in § 2.3.1 can be readily generalised to arbitrary hyperbolic systems. Let us introduce
the notation

λ+ = max(λ, 0) and λ− = min(λ, 0). (2.23)

The updated value Qn+1
i is then

Qn+1
i = Qn

i − ∆t

∆x

(
m∑
k=1

λ+
k W k,i−1/2 +

m∑
k=1

λ−
k W k,i+1/2.

)
, (2.24)

The cell average depends on the right-going waves from xi−1/2 and left-going waves from xi+1/2.

LeVeque (2002) introduced a shorthand notation

A+ ·∆Qi−1/2 =

m∑
k=1

λ+
k W k,i−1/2, (2.25)

A− ·∆Qi+1/2 =

m∑
k=1

λ−
k W k,i+1/2, (2.26)

which are interpreted as fluctuations: A+ ·∆Qi−1/2 represents the effect of all right-going waves from
xi−1/2 (where there is a discontinuity∆Qi−1/2 = Qi−Qi−1) on the cell average at time tn+1, whereas
A− ·∆Qi+1/2 represents the effect of all left-going waves from xi+1/2. This formulation that holds for
linear problems will be generalised to nonlinear problems.

For linear problems, we can relate the operators A+ and A− to the matrix A. We use the spectral
matrix Λ, namely the diagonal matrix whose entries are the eigenvalues of A. Making use of Eq. (1.8)

A = R ·Λ ·R−1 = R ·Λ ·L

where the right eigenvector matrixR = [w1, . . . ,wm] is a matrix whose columns are made of the right
eigenvectors, and

Λ = Λ− +Λ+ =


λ1 0 . . . 0
0 λ2 0
... . . . ...
0 . . . 0 λm

 =


λ−
1 0 . . . 0
0 λ−

2 0
... . . . ...
0 . . . 0 λ−

m

+


λ+
1 0 . . . 0
0 λ+

2 0
... . . . ...
0 . . . 0 λ+

m

 ,

we can define the negative and positive parts of A:

A− = R ·Λ− ·L,

A+ = R ·Λ+ ·L.
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Note that A = A− +A+. We can calculate A+ ·∆Qi−1/2

A+ ·∆Qi−1/2 = R ·Λ+ ·L ·Qi−1/2,

= R ·Λ+ ·αi−1/2,

=

m∑
k=1

αk
i−1/2λ

+
k wk,

=

m∑
k=1

λ+
k W

k
i−1/2,

= A+ ·∆Qi−1/2,

where we have defined the wave
W k

i−1/2 = αk
i−1/2wk.

Similarly we have

A− ·∆Qi+1/2 = A− ·∆Qi+1/2 =

m∑
k=1

λ−
k W

k
i+1/2.

For the linear advection problem, the fluctuations can be calculated by simply multiplying A± with
the jump ∆Qi±1/2. For the nonlinear case, the calculation is more complicated, but we will continue
to use the operators A± to represent the effects of right- and left-going waves on the value of Qn+1

i .

2.3.3 Interface flux

Clawpack approach

Note that the at interface between two cells, the interface value can be written (see Eq. (1.38)):

Q↓
i−1/2 = q↓(Qi−1,Qi) = Qi−1 +

∑
λk<0

W k
i−1/2. (2.27)

We then deduce that for a linear system, the flux at the interface is:

F n
i−1/2 = f(Q↓

i−1/2) = A ·Q↓
i−1/2 = A ·Qi−1 +

∑
λk<0

A ·W k
i−1/2. (2.28)

As W k is an eigenvector of A, we can rearrange the terms

F n
i−1/2 = A ·Qi−1 +

m∑
k=1

λ−
k W

k
i−1/2 = A ·Qi−1 +A− ·∆Qi−1/2. (2.29)

Concurrently, we have
Q↓

i−1/2 = Qi −
∑
λk>0

W k
i−1/2, (2.30)

and consequently

F n
i−1/2 = A ·Qi −

m∑
k=1

λ+
k W

k
i−1/2 = A ·Qi −A+ ·∆Qi−1/2. (2.31)
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Similarly, at the other interface, we have

F n
i+1/2 = A ·Qi+1 −

m∑
k=1

λ+
k W

k
i+1/2 = A ·Qi+1 −A+ ·∆Qi+1/2.

= A ·Qi +
m∑
k=1

λ−
k W

k
i+1/2 = A ·Qi +A− ·∆Qi+1/2.

This expressionwill be generalised to nonlinear systems (which, once linearised, involve only shock
waves), for which we will assume that

F n
i−1/2 = f(Qi−1) +A−∆Qi−1/2. (2.32)

or equivalently:
F n

i−1/2 = f(Qi)−A+∆Qi−1/2. (2.33)

Alternative: Harten–Lax–van Leer’s approach

Can we proceed differently for nonlinear systems? For a nonlinear problem, the theoretical expression
of the flux is more complicated, but there are approximate methods, such as the Harten–Lax–van Leer
(HHL) solver, that can be used to estimate the flux (Harten et al., 1983; Toro, 2019). In the HLL approach,
we focus on the lowest and highest wave velocities λ1 and λm. If λ1 < λm < 0, then Qi−1/2 = Qi. If
0 < λ1 < λm, then Qi−1/2 = Qi−1. The only unknown case is λ1 < 0 and λm > 0. Let us define XL

such that xL = xi−1/2 + λ1∆t and xR such that xR = xi−1/2 + λm∆t (see Fig. 2.5).

Integrating the hyperbolic equation (2.1) over [xL, xi−1/2]× [tn, tn+1] gives∫ xi−1/2

xL

q(x, tn+1)dx =

∫ xi−1/2

xL

q(x, tn)dx+

∫ tn+1

tn

f(q(xL, t))dt−
∫ tn+1

tn

f(q(xi−1/2, t))dt,

and if∆x = xi−1/2−xi−3/2 is chosen such that it lies in the domain controlled by the initial conditions
Qi−1 orQi as imposed by the CLF condition (in other words, the characteristics originating from xi−1/2

and xi−3/2 do not cross in the integrating domain [xi−3/2, xi−1/2]× [tn, tn+1]), then we can rearrange
the terms ∫ xi−1/2

xL

q(x, tn+1)dx = (xi−1/2 − xL)Qi−1 +∆tf(Qi−1)−∆tF i−1/2.

This gives us the relation:

F i−1/2 = f(Qi−1)− λ1Qi−1 −
1

∆t

∫ 0

−∆x
q(x, tn+1)dx. (2.34)

We now need to evaluate the last term implying q(x, tn+1) that is unknown. For this purpose, we redo
the calculation above, but by integrating over [xL, xR]∫ xR

xL

q(x, tn+1)dx =

∫ xi−1/2

xL

q(x, tn)dx+

∫ tn+1

tn

f(q(xL, t))dt−
∫ tn+1

tn

f(q(xR, t))dt.
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Figure 2.5 Calculating the interface flux F i−1/2 in the HLL method. The yellow area is the integrating
domain [xi−3/2, xi−1/2]× [tn, tn+1].

The contributions to the right-hand side are easy to calculate by interpreting the various terms in Fig.
2.5 ∫ xi−1/2

xL

q(x, tn)dx = −λ1∆tQi−1 + λm∆tQi,∫ tn+1

tn

f(q(xL, t))dt = f(Qi−1)∆t,∫ tn+1

tn

f(q(xR, t))dt = f(Qi)∆t.

We then deduce that∫ xR

xL

q(x, tn+1)dx = ∆t
(
λmQi − λ1Qi−1 + f(Qi−1)− f(Qi)

)
,

and thus the mean value QLR of q(x, tn+1) over the domain [xL, xR] is

QLR =
1

xR − xL

∫ xR

xL

q(x, tn+1)dx =
λmQi − λ1Qi−1 + f(Qi−1)− f(Qi)

λm − λ1

We can use this expression to evaluate the integral on the right-hand side of Eq. (2.34), and we can
deduce the flux at xi−1/2

F i−1/2 =
λmf(Qi−1)− λ1f(Qi) + λ1λm(Qi −Qi−1)

λm − λ1
. (2.35)

To sum up, the HLL solver determines the flux F i−1/2 without trying to determine the value ofQi−1/2

as in the Godunov method:

F i−1/2 =


f(Qi−1) if λ1 > 0
λmf(Qi−1)− λ1f(Qi) + λ1λm(Qi −Qi−1)

λm − λ1
if λ1 < 0 < λm

f(Qi) if λm < 0

(2.36)
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2.4 Approximate Riemann solvers for nonlinear prob-
lems

Earlier in this chapter, we have seen that a general time-marching algorithm to solve the hyperbolic
equation (2.1) is given by Eq. (2.6):

Qn+1
i = Qn

i − ∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
.

At each interface xi−1/2, the flux function is given by

F n
i−1/2 = f(Qn

i−1/2),

where Qn
i−1/2 is the value of Q obtained along the ray x = xi−1/2. It depends on the values Qn

i and
Qn

i−1 of either side of the interface. In the absence of a source terme, Qn
i remains constant along this

ray.

2.4.1 Scalar problems

Scalar Riemann problems are associated with five possible wave configurations (see Fig. 2.6):

(a) Left-going shock wave: Qn
i−1/2 = Qn

i .

(b) Left-going rarefaction wave: Qn
i−1/2 = Qn

i .

(c) Transonic2 rarefaction wave: Qn
i−1/2 = qs(Q

n
i , Q

n
i ). This is the only case for which we cannot

set the Qi−1/2 value in a simple way. Further calculations are needed to evaluate the value qs.
The unknown value qs satisfies

Qn
i−1 < qs < Qn

i ,

and this is associated with the vertical ray, its characteristic speed is zero. Therefore, qs is the
solution to

f ′(qs) = 0. (2.37)

(d) Right-going rarefaction wave: Qn
i−1/2 = Qn

i−1.

(e) Right-going shock wave: Qn
i−1/2 = Qn

i−1.

For a convex scalar flux, we can summarise all these possibilities

Fn
i−1/2 =


f(Qn

i−1) if Qn
i−1 > qs and σ̇ > 0

f(Qn
i ) if Qn

i < qs and σ̇ < 0
f(qs) if Qn

i−1 < qs < Qn
i ,

(2.38)

where the shock speed σ̇ is given by:

σ̇ =
f(Qn

i )− f(Qn
i−1)

Qn
i −Qn

i−1

.

Proof. It can be seen that cases (a) and (b) correspond to left-going waves with the following
possibilities:

2It is called transonic because it moves with velocity 0. In gas dynamics, this happens when one of the
eigenvalues u± c (c: sound speed) takes the value 0, thus when the fluid moves at the same speed as sound. In
Fig. 2.6(c) the fluid is accelerated from a subsonic velocity to a supersonic one through a rarefaction wave.
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(a) (b) (c) (d) (e)

Figure 2.6 The five possible solutions to a scalar Riemann problem: (a) left-going shock wave; (b)
left-going rarefaction wave; (c) transonic rarefaction wave; (d) right-going rarefaction wave; and (e)
right-going shock wave.

(a) if initiallyQn
i−1 > Qn

i , the wave is a shock propagating at velocity σ̇ < 0, and the characteristic
velocity is negative: f ′(Qn

i ) < 0. Since f is assumed to be convex (and thus f ′(q) is an increasing
function of q) and qs is defined as f ′(qs) = 0, then Qn

i < qs.

(b) if initiallyQn
i−1 < Qn

i , then the wave is a rarefactionwave. The largest velocitymust be negative:
f ′(Qn

i ) < 0. Since f is convex, then

f ′(Qi−1) <
f(Qn

i )− f(Qn
i−1)

Qn
i −Qn

i−1

< f ′(Qi),

and thus the ratio σ̇ is also negative.

We repeat the reasoning for cases (c) to (e). ⊓⊔

A more compact way used in Clawpack is given

Fn
i−1/2 =


min

Qn
i−1≤q≤Qn

i

f(q) if Qn
i−1 ≤ Qn

i ,

max
Qn

i ≤q≤Qn
i−1

f(q) if Qn
i−1 ≥ Qn

i ,
(2.39)

because qs is the global minium or maximum of f . This equation can be generalised to the non-convex
case.

Remark. We have seen in § 1.2.2 that the Lax entropy condition is an extra condition imposed
to shock waves for them to be physically admissible. A shock wave must dissipate energy, not create
energy (or from a thermodynamical standpoint, entropy increases through a shock, and does not de-
crease). A shock wave satisfies the Lax entropy condition if its speed σ̇ lies between bounds fixed by
the initial data

f ′(Qn
i−1) > σ̇ > f ′(Qn

i ). (2.40)

For a scalar problem, the time-marching algorithm to solve the hyperbolic equation (2.1) is given
by Eq. (2.6):

Qn+1
i = Qn

i − ∆t

∆x

(
Fn
i+1/2 − Fn

i−1/2

)
,

or equivalently by using the notation Fn
i−1/2 = f(Q↓

i−1/2)

Qn+1
i = Qn

i − ∆t

∆x

[
f(Q↓

i+1/2)− f(Qn
i )−

(
f(Q↓

i−1/2)− f(Qn
i )
)]

.

We can make an analogy with the formulation for linear equations, which emphasizes the role of fluc-
tuations (see § 2.3). We put the equation above in a form consistent with LeVeque’s notation:

Qn+1
i = Qn

i − ∆t

∆x

(
A+∆Qi−1/2 +A−∆Qi+1/2

)
,
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where the operator A± represent flux fluctuations, and are defined by

A+∆Qi−1/2 = f(Qn
i )− f(Q↓

i−1/2),

A−∆Qi+1/2 = f(Q↓
i+1/2)− f(Qn

i ).

High-resolution techniques involve defining the wave Wi−1/2 and speed σ̇i−1/2 associated with the
Riemann problem:

Wi−1/2 = Qi −Qi−1,

σ̇i−1/2 =


f(Qn

i )− f(Qn
i−1)

Qn
i −Qn

i−1

if Qi ̸= Qi−1,

f ′(Qn
i ) if Qi = Qi−1.

When the Riemann solution is a shock wave, the speed chosen is the one given by the Rankine-
Hugoniot equation. When it is a rarefaction wave, we have seen in § 1.4.3 that the Rankine-Hugoniot
equation provides a correct estimate of the actual wave speed, and the wave behaviour can be approxi-
mated locally by a shock wave even if the latter would not satisfy the entropy condition (2.40). The big
advantage is that we can treat all waves as (local) shock waves regardless of their actual nature. When
the solution is not a transonic wave, we can also express the fluctuations as:

A+∆Qi−1/2 = σ̇+
i−1/2Wi−1/2, (2.41)

A−∆Qi+1/2 = σ̇−
i+1/2Wi+1/2, (2.42)

where σ̇+ = max(σ̇, 0) and σ̇− = min(σ̇, 0). Equation (2.41) is used in Clawpack for solving scalar
problems.

Figure 2.7 A transonic wave occurs whenever the velocity on the left and the right of the interface
xi−1/2 are not of the same sign. In this case, part of the interval [xi−1/2, xi+1/2] at time tn+1, highlighted
in yellow in the figure, is not affected by the conditions at time tn. There is thus a transonic wave that
propagates information in the gray wedge around the interface xi−1/2.

When the Riemann solution consists of a transonic rarefaction wave, the fluctuation terms
A±∆Qi±1/2 need to be corrected using an entropy fix. In Clawpack, the waveWi and speed σ̇i are first
computed, and from them, we determine the fluctuations using Eq. (2.41). If f ′(Qn

i−1) < 0 < f ′(Qn
i )
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(see Fig. 2.7), then the fluctuations in Eq. (2.41) are replaced by one of the equations (for the interface
from which the transonic wave originates):

A+∆Qi−1/2 = f(Qn
i )− f(qs), (2.43)

A−∆Qi+1/2 = f(qs)− f(Qn
i ). (2.44)

Although this approach based on an entropy fix is unnecessary for scalar problems, it is easy to gen-
eralise to nonlinear systems of hyperbolic equations, for which there is no easy way to determine the
rarefaction wave structure exactly.

2.4.2 Systems of equations

The method used for scalar problems can be generalised to systems of hyperbolic equations. The crux
lies in the determination of the interface value Q↓

i−1/2 (the value of q along the interface). This value
is usually one of the intermediate states that connect the left and right states Qn

i and Qn
i−1 through a

series of shock and rarefaction waves, and thus it can be expressed as a function of these two states:

Q↓
i−1/2 = Q↓

i−1/2(Q
n
i−1,Q

n
i ).

WhenQ↓
i−1/2 is part of a transonic rarefaction wave, additional work is required to determine the wave

structure.

The computational approach to solving the nonlinear Riemann problem is the same as the one
taken for linear problems. When dealing with Godunov’s equation (2.6), Clawpack still uses the wave-
propagation form

Qn+1
i = Qn

i − ∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
,

= Qn
i − ∆t

∆x

(
A+∆Qn

i−1/2 +A−∆Qn
i+1/2

)
, (2.45)

where the operatorsA± represent the fluctuations, and are defined by generalising the linear case (see
§ 2.3.3):

A−∆Qn
i+1/2 = f(Q↓n

i+1/2)− f(Qn
i ), (2.46)

A+∆Qn
i−1/2 = f(Qn

i )− f(Q↓n
i−1/2), (2.47)

These definitions are useful when the solution to the Riemann problem is a transonic wave.

When the solution is a shock or rarefaction wave, the fluctuations can also be approximated by
considering that in the close vicinity of the initial state the solution behaves like a shock wave (see
§ 1.4.3), and like in the linear case, the fluctuations are given by:

A−∆Qn
i+1/2 =

Mw∑
k=1

σ̇−
k,i+1/2W

n
k,i+1/2, (2.48)

A+∆Qn
i−1/2 =

Mw∑
k=1

σ̇+
k,i−1/2W

n
k,i−1/2, (2.49)

where Mw is the number of waves (usually Mw = m), σ̇k,i+1/2 is the speed of the kth wave W k,i+1/2

at xi−1/2, σ̇− = min(0, σ̇) and σ̇+ = max(0, σ̇). When the solution involves only shocks, the kth
wave speed sk is the k eigenvalue (σ̇k = λk) and the Eqs. (2.48)–(2.49) give the same results as Eqs.
(2.46)–(2.47) do, but in the general case, they are just an approximation of the interface fluxes. When
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the solution involves rarefaction waves, their speed varies spatially, but a correct approximation is the
following:

σ̇k,i−1/2 =
λk,i−1 + λk,i

2
.

The computational cost is high if we use exact Riemann solvers. A variety of approximate Riemann
solvers have been proposed to reduce this cost (Toro, 2001; LeVeque, 2002). If a linearised Riemann
solver (see below) is used, then the operators A± are based on the positive and negative parts Â± of
the linearised solver Â, the wave speeds σ̇k match its eigenvalues λ̂k, and the waves W k are right
eigenvectors of Â. An entropy fix can applied to modify the flux fluctuations.

Linearised solvers

Nonlinear equations
∂

∂t
q +

∂

∂x
f(q) = 0

can be linearised when the initial values ql and qr are sufficiently close to each other, and put in the
linear form

∂q

∂t
+ Â · ∂q

∂x
= 0,

for each interface xi−1/2. The constant matrix Â is an approximation of f ′(q)whenQi−1 andQi tend
to q. The approximate solution involvesm shock waves that are proportional to the right eigenvectors
qi−1/2 ofA and move at speed σ̇i−1/2 = λi−1/2 given by the eigenvalues ofA. One possibility among
other options is to set

A = f ′
(
Qi +Qi−1

2

)
.

An alternative choice is
Âi−1/2 =

1

2
(f ′(Qi−1) + f ′(Qi)).

This approach works fine when the solution is continuous, but may run into trouble when the solu-
tion involves discontinuities. Other constraints are needed to avoid the difficulties. The Roe function
(studied later) is an example of linearised solvers (Roe, 1981).

When using the linearised Roe solver, the approximate solution involve only shockwaves. As shock
and rarefaction waves have the same behaviour in the close vicinity of a given state (see § 1.3.2), the
approximate solution is expected to mimic the exact solution. There are, however, situations in which
the agreement is no longer good: indeed, we have seen for the nonlinear case that when λ(Qi−1) <
0 < λ(Qi), then the left and right states Qi and Qi−1 are connected by a rarefaction wave (see § 2.4.1).
For hyperbolic systems, the same problem will arise whenever one or more eigenvalues λk satisfy
λk
i−1 < 0 < λk

i . The Riemann solver must be modified to handle this case properly. Such a modification
is called an entropy fix.

Two-wave solvers

Several approximate solvers are based on the idea that the Riemann solution can be approximated
by picking up two of the m waves, W 1 and W 2, and defining an intermediate state Q∗ such that
W 1 = Q∗ −Ql and W 2 = Qr −Q∗. The Rankine-Hugoniot implies that f(Ql)− f(Q∗) = σ̇1W 1

and f(Qr)−f(Q∗) = σ̇2W 2. By adding these two equations, we end up with a system ofm equations

f(Qr)− f(Ql) = σ̇1W 1 + σ̇2W 2,
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which gives

Q∗ =
f(Qr)− f(Ql)− σ̇2Qr + σ̇1Ql

σ̇1 − σ̇2
.

Thevarious solvers proposed so far differ by the choice of the speeds σ̇1 and σ̇2 alongwith thewavesW 1

and W 2. Lax-Friedrichs and Harten-Lax-van Leer (HLL) are classic solvers (see § 2.3.3 for a rationale).

The advantage of HLL solvers is that they usually do not need an entropy fix to compute transonic
rarefaction waves. As they involve only two waves (thereby ignoring all other waves), they may lead
to poorer resolutions for systems made of m > 2 equations (Toro, 2019).

2.5 Roe solver

The Roe solver linearises the governing equation (2.1):

∂q

∂t
+ Âi−1/2

∂q

∂x
= 0.

The matrix Âi−1/2 is constructed so that it approximates f ′(q) in the neighbourhood of Qi and Qi−1

and satisfies the conditions

1. Continuity condition:
Âi−1/2 → f ′(q) when Qi−1,Qi → q.

2. Hyperbolicity: Âi−1/2 is diagonisable, withm right eigenvectors ŵk,i−1/2 associatedwith eigen-
values λk,i−1/2.

3. Roe linearisation. This third property states that if Qi−1 and Qi are connected by a single wave
W i−1/2 = Qi −Qi−1 in the original Riemann problem, then W i−1/2 should also be an eigen-
vector of Âi−1/2:

f(Qi)− f(Qi−1) = Âi−1/2 · (Qi −Qi−1) = σ̇(Qi −Qi−1), (2.50)

where σ̇ is the wave speed: σ̇ = λk,i−1/2 since W i−1/2 is a right eigenvector of Âi−1/2 .

Formally, the matrix Âi−1/2 can be determined by integrating the Jacobian over a straight-line path
q(ξ) = Qi−1 + ξ(Qi −Qi−1):

Âi−1/2 =

∫ 1

0

df(q(ξ))
dq dξ, (2.51)

for 0 ≤ ξ ≤ 1. Indeed, we have

f(Q)− f(Qi−1) =

∫ 1

0

df
dξ dξ

=

∫ 1

0

df(q(ξ))
dq · dqdξ dξ

=

(∫ 1

0

df(q(ξ))
dq dξ

)
· (Qi −Qi−1),

since the ξ derivative of q is q′ = Qi − Qi−1. By comparing the equation above with Eq. (2.50), we
deduce that the linearised matrix is given by Eq. (2.51).

There is no guarantee that the resulting matrix is diagonisable with m real eigenvalues and that it
takes an analytical form. By making a change of variable, Roe (1981) showed that this difficulty can
often be overcome (LeVeque, 2002, see pp. 317-323).
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2.6 Two-wave solver: HLL solver

The idea underpinning the HLL solver’s derivation is that the solution to the Riemann problem consists
of two shockwaves separating an intermediate state from the left and right initial states (see also § 2.3.3).
The speeds σ̇1 and σ̇2 of these waves are given by the Rankine-Hugoniot equation

f(Qi−1)− f(Q∗) = σ̇1(Qi−1 −Q∗), (2.52)

f(Q∗)− f(Qi) = σ̇2(Q∗ −Qi) (2.53)

Solving Eqs. (2.52) and (2.53) for Q∗ and F ∗ = f(Q∗) gives

Q∗ =
σ̇2Qi − σ̇1Qi−1

σ̇2 − σ̇1
+

F i−1 − F i

σ̇2 − σ̇1
(2.54)

F ∗ =
σ̇2F i−1 − σ̇1F i

σ̇2 − σ̇1
− σ̇2σ̇2

Qi−1 −Qi

σ̇2 − σ̇1
, (2.55)

with F i = f(Qi). For the Harten–Lax–van-Leer (HLL) solver, the speeds are defined as the lower and
upper bounds of all characteristic speeds. Einfeldt (1988) suggested

σ̇1, i−1/2 = min
1≤k≤m

(
min(λk, i, λ̂k, i−1/2)

)
, (2.56)

σ̇2, i−1/2 = max
1≤k≤m

(
max(λk, i−1, λ̂k, i−1/2)

)
, (2.57)

where λk, i is the kth eigenvalue of the Jacobian f ′(Qi) and λ̂k, i−1/2 is kth eigenvalue of the Roe
matrix (linearised Jacobian). The resulting scheme is called the HLLE solver.

2.7 Alternative: the f-wave method

An alternative approach to the wave decomposition is to first split the jump in f into f-waves:

f(Qi)− f(Qi−1) =

mw∑
k=1

Zk,i−1/2, (2.58)

moving at speeds σ̇k,i−1/2, then express the fluctuations in terms of the f-waves. This method is useful
to study the second-order accuracy of wave-propagation methods or in the context of spatially-varying
flux functions f(q, x) (LeVeque, 2002, see § 15.5). It also guarantees that approximate Riemann solvers
are conservative.

When dealing with a linear or linearised problems, we can decompose f(Qi)−f(Qi−1) as a linear
combination of the right eigenvectors ŵk,i−1/2 of the linearised matrix Âi−1/2:

f(Qi)− f(Qi−1) =

mw∑
k=1

βk
i−1/2ŵ

k
i−1/2, (2.59)

where the coefficient vector βi−1/2 is the solution to the linear system (2.59):

βi−1/2 = R−1 · (f(Qi)− f(Qi−1)) = L · (f(Qi)− f(Qi−1)). (2.60)

The f-waves are then
Zk

i−1/2 = βk
i−1/2ŵ

k
i−1/2. (2.61)
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These f-waves are related to the waves W k,i−1/2 when the wave speeds are nonzero

W k
i−1/2 =

Zk
i−1/2

σ̇k
i−1/2

, (2.62)

and the fluctuations are
A−

i−1/2∆Qi−1/2 =
∑

k: σ̇k<0

Zk
i−1/2, (2.63)

A+
i−1/2∆Qi−1/2 =

∑
k: σ̇k>0

Zk
i−1/2. (2.64)

Another advantage of the f-wave decomposition is the possibility of including the source term into
this decomposition (Ketcheson et al., 2013). The f-wave approach is highly recommended when the
solution is close to a steady state, as it leads to a well-balanced system. Let us assume that we are
concerned with the equation

∂

∂t
q +

∂

∂x
f(q) = S(q, x) (2.65)

where S(q, x) is the source term. We now express the flux difference at the interface xi−1/2

f(Qi)− f(Qi−1)−∆xS(Qi,Qi−1, xi−1/2) =

mw∑
k=1

Zk
i−1/2 = βk

i−1/2ŵ
k
i−1/2, (2.66)

whereS(Qi,Qi−1, xi−1/2) is a representative value of the source termS at the interface xi−1/2, which
depends on Qi and Qi−1.

2.8 High-resolutions methods

2.8.1 Scalar problems

Derivation of the time-marching algorithm

Let us consider the scalar advection equation

∂q

∂t
+ ū

∂q

∂x
= 0, (2.67)

where ū > 0 denotes the advection velocity. We assume that from the cell average Qn
i at time tn, we

can infer a piecewise-polynomial approximation order p

q̃(x, tn) =

p∑
k=0

ak,i(x− xi)
k = Qn

i +

p∑
k=1

ak,i(x− xi)
k over xi−1/2 ≤ x ≤ xi+1/2, (2.68)

where the coefficients ak,i satisfy

a0,i = Qn
i and

∫ xi+1/2

xi−1/2

p∑
k=1

ak,i(x− xi)
kdx =

p∑
k=1

ak,i

(
(−1)k + 1

)
k + 1

(
∆x

2

)k+1

= 0

so that the cell average of q̃ is Qn
i .

The solution to Eq. (2.67) subject to the initial condition (2.68) is

q(x, tn+1) = q̃(x− ū∆t, tn). (2.69)
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Figure 2.8 Domain of influence: the yellow area shows the time domain influenced by the condition
qn(x, tn) over [xi−1/2, xi+1/2] at time tn+1 while the grey are shows the domain influenced by qn(x, tn)
over [xi−3/2, xi−1/2].

Integrating Eq. (2.69) over [xi−1/2, xi+1/2] gives

Qn+1
i =

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn+1)dx

=
1

∆x

∫ xi+1/2

xi−1/2

q̃(x− ū∆t, tn)dx

=
1

∆x

∫ xi+1/2−ū∆t

xi−1/2−ū∆t
q̃(ξ, tn)dξ

and taking into account the domain of influence (see Fig. 2.8) gives

Qn+1
i = Qn

i−1

ū∆t

∆x
+Qn

i

(
1− ū∆t

∆x

)
+

1

∆x

p∑
k=1

∫ xi−1/2

xi−1/2−ū∆t
ak,i−1(x− xi−1)

kdx

+
1

∆x

p∑
k=1

∫ xi+1/2−ū∆t

xi−1/2

ak,i(x− xi)
kdx.

To first order in ∆x and second order in ∆t, this expression reads

Qn+1
i = Qn

i − ū∆t

∆x
(Qn

i −Qn
i−1)−

1

2

ū∆t

∆x
(∆x− ū∆t)(a1,i − a1,i−1). (2.70)

Alternative 1

This result can be derived differently (which will be useful when extending the method to higher di-
mensions). The second-order Taylor expansion of q(x, tn+1 −∆t) is

q(x, tn) = q(x, tn+1 −∆t) = q(x, tn+1)−∆t
∂

∂t
q(x, tn+1) +

∆t2

2

∂

∂t
q(x, tn+1),

= q(x, tn+1) + ū∆t
∂

∂x
q(x, tn+1) +

ū2∆t2

2

∂2

∂x2
q(x, tn+1), (2.71)
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since

∂q

∂t
= −ū

∂q

∂x
,

∂2q

∂t2
= −ū

∂2q

∂t∂x
= −ū

∂

∂x

(
∂q

∂t

)
= ū2

∂2q

∂x2
.

By integrating Eq. (2.71) over [xi−1/2, xi+1/2] and dividing by ∆x gives

Qn
i = Qn+1

i + ū
∆t

∆x

∫ xi+1/2

xi−1/2

∂

∂x
q(x, tn+1)dx+

ū2∆t2

2∆x

∫ xi+1/2

xi−1/2

∂2

∂x2
q(x, tn+1)dx, (2.72)

where the derivatives should be understood in the sense of distributions. Recall that for any piecewise
C1 function q with a jump at xj

q(x, t) =

{
Qi−1 + ai−1(x− xi−1) if x < xj ,
Qi + ai(x− xi) if x > xj

the derivative of its distribution is

T ′[q] = JqKδ(x− xj) +

{
ai−1 if x < xj ,
ai if x > xj

where δ is the Dirac function and the jump in q is

JqK = lim
x→xj
x>xj

q(x, t)− lim
x→xj
x<xj

q(x, t) = Qi + ai(xj − xi)−Qi−1 − ai−1(xj − xi−1).

The second derivative of the associate distribution is

T ′′[q] = Jq′Kδ(x− xj),

where Jq′K = ai − ai−1.

Moreover Eq (2.69) tells us that q(x, tn+1) = q̃(x− ū∆t, tn), and thus we can express the integral
terms of Eq. (2.72) as ∫ xi+1/2

xi−1/2

∂

∂x
q(x, tn+1)dx =

∫ xi+1/2

xi−1/2

∂

∂x
q̃(x− ū∆t, tn)dx

=

∫ xi+1/2−ū∆t

xi−1/2−ū∆t

∂

∂x
q̃(x, tn)dx. (2.73)

Given that the function q̃ is discontinuous at xj = xi−1/2 = xi −∆x/2, the jumps are

Jq̃K = Qn
i −Qn

i−1 −
∆x

2
(ai−1 + ai) and Jq̃′K = ai − ai−1.

With these two definitions, we can decompose the integral term of Eq. (2.73):∫ xi+1/2

xi−1/2

∂

∂x
q̃(x, tn+1)dx = ai−1ū∆t+ (∆x− ū∆t)ai + Jq̃K,

= Qn
i −Qn

i−1 + (ai − ai−1)
∆x

2
− (ai − ai−1)ū∆t, (2.74)

and ∫ xi+1/2

xi−1/2

∂2

∂x2
q̃(x, tn+1)dx = Jq̃′K = ai − ai−1. (2.75)
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By substituting Eqs. (2.74) and (2.75) into Eq. (2.72), we find the second-order (in time) approximation
of Qn+1

i given by Eq. (2.70):

Qn+1
i = Qn

i − ū∆t

∆x
(Qn

i −Qn
i−1)−

1

2

ū∆t

∆x
(∆x− ū∆t)(ai − ai−1).

If we now assume that ū < 0, then we find:∫ xi+1/2

xi−1/2

∂

∂x
q̃(x, tn+1)dx = −aiū∆t+ (∆x+ ū∆t)ai+1 + Jq̃K,

= Qn
i+1 −Qn

i + (ai − ai+1)
∆x

2
+ (ai − ai+1)ū∆t,

and ∫ xi+1/2

xi−1/2

∂2

∂x2
q̃(x, tn+1)dx = Jq̃′K = ai+1 − ai.

We deduce that Qn+1
i is given by

Qn+1
i = Qn

i − ū∆t

∆x
(Qn

i+1 −Qn
i ) +

1

2

ū∆t

∆x
(∆x+ ū∆t)(ai+1 − ai). (2.76)

We can merge Eqs. (2.70) and (2.76) into a single equation

Qn+1
i = Qn

i − ∆t

∆x
(ū+∆Qi−1/2 + ū−∆Qi+1/2)−

|ū|∆t

2

(
1− |ū|∆t

∆x

)
∆a, (2.77)

where ū+ = max(ū, 0), ū− = min(ū, 0), ∆Qi−1/2 = Qi −Qi−1, ∆Qi+1/2 = Qi+1 −Qi, and

∆a =

{
ai+1 − ai if ū < 0,
ai − ai−1 if ū > 0.

Alternative 2

Let us assume again that ū > 0. Equation (2.70) can also be obtained by applying the time-marching
algorithm (2.6):

Qn+1
i = Qn

i − ∆t

∆x

(
Fn
i+1/2 − Fn

i−1/2

)
, (2.78)

where the interface flux is

Fn
i±1/2 =

1

∆t

∫ tn+1

tn

ūq(xi±1/2, t)dt,

=
ū

∆t

∫ tn+1

tn

q̃(xi±1/2 − ūt)dt

=
1

∆t

∫ xi±1/2

xi±1/2−ū∆t
q̃(ξ)dξ,

from which we deduce the following expressions to first order

Fi−1/2 = ūQi−1 +
1

2
ai−1ū(∆x− ū∆t), (2.79)

and
Fi+1/2 = ūQi +

1

2
aiū(∆x− ū∆t). (2.80)
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Using these expressions in Eq. (2.78), we obtain Eq. (2.70) again. We can interpret the latter by noting
that

ū(Qn
i −Qn

i−1) = ū∆Qi−1/2 = ū+∆Qi−1/2 + ū−∆Qi+1/2,

where ū+ = max(ū, 0), ū− = min(ū, 0), and defining the flux corrections when ū > 0

F̂i−1/2 =
ai−1

2
ū(∆x− ū∆t) and F̂i+1/2 =

ai
2
ū(∆x− ū∆t).

we can recast Eq. (2.70) in the following form

Qn+1
i = Qn

i − ∆t

∆x

(
ū+∆Qi−1/2 + ū−∆Qi+1/2

)
− ∆t

∆x

(
F ′
i+1/2 − F ′

i−1/2

)
. (2.81)

When ū < 0, then the second-order (in time) flux corrections are

F̂i−1/2 = −ai
2
ū(∆x+ ū∆t) and F̂i+1/2 = −ai+1

2
ū(∆x+ ū∆t).

Alternative 3

It is possible to cast the time-marching algorithm (2.70) in a slightly different form. This new form will
lead to a set of coupled ordinary differential equations (method of lines). To that end, we need new
variables (see Fig. 2.9): at each interface xi−1/2, we define the value of q on its right:

q+i−1/2 = Qn
i − ai

∆x

2
, (2.82)

while the value of q on the left of xi−1/2 is

q−i−1/2 = Qn
i−1 + ai−1

∆x

2
. (2.83)

The jump of q at the interface is denoted by

∆qi−1/2 = q+i−1/2 − q−i−1/2 = Qn
i −Qn

i−1 −
∆x

2
(ai−1 + ai) (2.84)

while the q variation over [xi−1/2, xi+1/2] is denoted by

∆qi = q−i+1/2 − q+i−1/2 = ai∆x. (2.85)

Figure 2.9 Notation.
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Substituting Eqs. (2.82) and (2.83) into the time-marching equation (2.70) (for ū > 0) and keeping
first-order terms in ∆x and ∆t leads to

Qn+1
i = Qn

i − ū∆t

∆x

(
q+i−1/2 − q−i−1/2 + ai∆x

)
= Qn

i − ū∆t

∆x

(
∆qi−1/2 +∆qi

)
.

If we now take the case ū < 0 into account and generalise the previous equatio, we arrive at the
following variant of the time-marching equation (2.70):

Qn+1
i = Qn

i − ∆t

∆x

(
ū+∆qi−1/2 + ū−∆qi+1/2 + ū∆qi

)
,

and if we take the limit ∆t → 0, then we obtain a set of coupled ordinary differential equations

∂Qi

∂t
= − 1

∆x

(
ū+∆qi−1/2 + ū−∆qi+1/2 + ū∆qi

)
for 1 ≤ i ≤ n. (2.86)

This equation is used in SharpClaw, which implements essentially non-oscillating (ENO) and
weighted essentially non-oscillating (WENO) algorithms to extend the accuracy of the numerical so-
lutions of hyperbolic problems to arbitrarily high order accuracy by using (i) spatial reconstruction
of the solution at each time step tn+1 and (ii) a high-order accurate ODE solver (often based a Runge–
Kutta algorithm) (Ketcheson et al., 2013). ENO andWENO algorithms are detailed elsewhere (Shu, 1998,
2020).

Choice of slopes

There are three obvious choices for slope ai when reconstructing a piecewise-linear approximation of
q(x, t):

• Centred slope (Fromm)

ai =
Qn

i+1 −Qn
i−1

2∆x
.

• Upwind slope (beam-warming)

ai =
Qn

i −Qn
i−1

∆x
.

• Downwind slope (Lax–Wendrof)

ai =
Qn

i+1 −Qn
i

∆x
.

High-resolution methods improve accuracy when the solution is smooth, but they also tend to smear
discontinuities and create spurious fluctuations. A strategy to avoid this issue is to apply a second-order
correction wherever the solution is smooth, but to use a first-order scheme near discontinuities. This
can be achieved by limiting the slope ai. Methods implementing this strategy are called slope-limiter
methods. An example of these methods is the minmod slope:

ai = minmod
(
Qn

i −Qn
i−1

∆x
,
Qn

i+1 −Qn
i

∆x

)
,

where the minmod function defined by:

minmod(a, b) =


a if |a| < |b| and ab > 0,
b if |b| < |a| and ab > 0,
0 if ab ≤ 0,
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returns the argument that is smaller in absolute value when the arguments are of the same sign, but
zero when they are of different sign (which indicates a local minimum or maximum). A variant is the
superbee limiter:

ai = maxmod
(
a
(1)
i , a

(2)
i

)
,

where the maxmod function returns the largest argument in magnitude and

a
(1)
i = minmod

(
Qn

i+1 −Qn
i

∆x
, 2

Qn
i −Qn

i−1

∆x

)
,

a
(2)
i = minmod

(
2
Qn

i+1 −Qn
i

∆x
,
Qn

i −Qn
i−1

∆x

)
.

Slope-limiter methods were initially developed by van Leer in an approach called monotonic upstream-
centered scheme for conservation laws (MUSCL) (van Leer, 1979).

Alternative: flux-limiter methods

In the time-marching algorithm (2.79), the interface fluxes were given by Eqs. (2.79) and (2.80). Since
the slope ai−1 is expressed as the difference ∆Qi−1/2 between the cell averages Qi and Qi−1 when
applying a slope-limited method, then this means that we actually express the flux (2.79) as

Fi−1/2 = ūQi−1 +
1

2
ai−1ū∆x

(
1− ū∆t

∆x

)
ai−1,

= ū−Qi + ū+Qi−1 +
1

2
ai−1|ū|

(
1−

∣∣∣∣ ū∆t

∆x

∣∣∣∣) ai−1∆x,

= ū−Qi + ū+Qi−1 +
1

2
ai−1|ū|

(
1−

∣∣∣∣ ū∆t

∆x

∣∣∣∣) δ(∆Qi−1/2),

where δ is a function that modulates the difference ∆Qi−1/2. By doing so, we can turn a slope-limiter
method into a flux-limiter method:

δ(∆Qi−1/2) = ϕ(θi−1/2)δ(∆Qi−1/2), (2.87)

where the function ϕ measures the degree of smoothness near xi−1/2:

ϕ(∆Qi−1/2) =
δ(∆Qj−1/2)

δ(∆Qi−1/2)
with j =

{
i− 1 if |ū| > 0,
i+ 1 if |ū| < 0.

(2.88)

Typically, when the function is smooth at xi−1/2, then ϕ should be close to unity, whereas it takes
much higher or lower values if there is a discontinuity. For linear methods, we can encode the previous
choices of ai by setting

• Upwind scheme: ϕ(θ) = 0.

• Downwind slope (Lax–Wendrof): ϕ(θ) = 1.

• Upwind slope (beam-warming): ϕ(θ) = θ.

• Centred slope (Fromm): ϕ(θ) = 1
2(1 + θ).

For high-resolution methods, limiters of common use are:

• minmod: ϕ(θ) = minmod(1, θ).
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• superbee: ϕ(θ) = max(0,min(1, 2θ),min(2, θ)).

• monotonised centred (MC): ϕ(θ) = max(0,min((1 + θ)/2, 2, 2θ)).

• van Leer:
ϕ(θ) =

θ + |θ|
1 + |θ|

.

All these methods are total-variation diminishing (TVD):

TV(Qn+1) ≤ TV(Qn), (2.89)

where
TV(Qn+1) =

∑
i

|Qi −Qi+1|.

The total variation (2.89) is the discretisation of the total variation for continuous functions (or distri-
butions)

TV(q) =
∫

|f ′(q)|dx.

The exact solution to the linear advection equation does not change shape over time, and thus its total
variation must be constant in time. For the numerical solution to the linear advection equation, we
expect that the total variation does not increase if no spurious oscillations are created by the numerical
scheme.

A theorem due to Harten (1983) guarantees that if ϕ varies within the range

0 ≤ ϕ(θ) ≤ minmod(1, θ),

then the method is TVD. Sweby (1984) found that second-order TVD methods must lie in the region
bounded by the Lax–Wendroff and beam-warming curves (see Fig. 2.10).
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Figure 2.10 (a) Comparison of the beam-warming, Fromm, and Lax–Wendroff limiters. The coloured
area shows where the function values must lie for the method to be TVD. (b) Minmod limiter. The
coloured area shows where the function values must lie for the method to be second-order TVD. (c)
Superbee limiter. (d) MC limiter.
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2.8.2 Linear systems

The Lax–Wendroff method

Let us consider the following linear hyperbolic problem

∂q

∂t
+A · ∂q

∂x
= 0. (2.90)

where q = (qk)1≤k≤n is the unknown vector,A = R ·Λ ·L is am×mmatrix with right eigenvectors
wk and eigenvalues λk (1 ≤ k ≤ m). L is the left-eigenvector matrix (L = R−1) whose rows are
made of the left eigenvectors vk, and Λ = diag(λ1≤k≤n) is the spectral matrix.

The second-order Taylor expansion of q(x, tn +∆t) is

q(x, tn +∆t) = q(x, tn) + ∆t
∂

∂t
q(x, tn) +

1

2
∆t2

∂2

∂t2
q(x, tn). (2.91)

From Eq. (2.90), we deduce that
∂q

∂t
= −A · ∂q

∂x
,

and after differentiating it with respect to time gives

∂2q

∂t2
= −A · ∂

∂x

(
−A · ∂q

∂x

)
,

= A2 · ∂
2q

∂x2
.

Equation (2.90) can be recast

q(x, tn +∆t) = q(x, tn)−∆tA · ∂q
∂x

(x, tn) +
1

2
∆t2A2 · ∂

2q

∂x2
(x, tn). (2.92)

We discretise the spatial derivatives of Eq. (2.92) using central finite differences:

∂q

∂x
=

Qn
i+1 −Qn

i−1

2∆x
and ∂2q

∂x2
=

Qn
i+1 +Qn

i−1 − 2Qn
i

∆x2
.

We arrive at the Lax–Wendroff method, which is second-order accurate:

Qn+1
i = Qn

i − ∆t

2∆x
A · (Qn

i+1 −Qn
i−1) +

∆t2

2∆x2
A2 · (Qn

i+1 +Qn
i−1 − 2Qn

i ), (2.93)

which leads to the following flux function

F n
i−1/2 =

1

2
A · (Qn

i +Qn
i−1)−

∆t

2∆x
A2 · (Qn

i −Qn
i−1). (2.94)

Introducing the negative and positive parts of A along with its absolute part (see § 2.3.2):

A = A+A− and |A| = A+ −A−,

we can transform the sum A · (Qn
i +Qn

i−1) into

A · (Qn
i +Qn

i−1) =A+ ·Qn
i−1 +A− ·Qn

i +A− ·Qn
i−1 +A+ ·Qn

i ,

= A+ ·Qn
i−1 +A− ·Qn

i + (A+ − |A|) ·Qn
i−1 + (A+ + |A|) ·Qn

i ,

= 2A+ ·Qn
i−1 + 2A− ·Qn

i + |A| · (Qn
i −Qn

i−1).
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We can then express the flux function (2.94) in the more traditional form, which makes the first-order
flux correction apparent:

F n
i−1/2 = A+ ·Qn

i−1 +A− ·Qn
i +

1

2
|A| ·

(
1− ∆t

∆x
|A|
)
· (Qn

i −Qn
i−1). (2.95)

Like for the scalar case, we would like to limit the flux correction wherever it is needed. This limita-
tion cannot be applied abruptly to the vector∆Qi−1/2 = Qn

i −Qn
i−1 itself, but to its components along

the wave propagation direction ∆wk. To that end, we decompose ∆Qi−1/2 in the base (wk)1≤k≤n

∆Qi−1/2 =
m∑
k=1

αk
i−1/2wk,

and we then apply the limiter function ϕ (which can be any function used in the scalar case) to each
component

α̂k
i−1/2 = ϕ(θki−1/2),

where the function θ examines the degree of smoothness

θki−1/2 =
θkI−1/2

θki−1/2

with I =

{
i− 1 if λk > 0,
i if λk < 0

.

To sum up, the Lax–Wendroff method leads to a flux function of the form

F n
i−1/2 = A+ ·Qn

i−1 +A− ·Qn
i + F̂

n
i−1/2, (2.96)

where the correction term is based on a flux-limiter function

F̂
n
i−1/2 =

1

2
|A| ·

(
1− ∆t

∆x
|A|
)
·

m∑
k=1

α̂k
i−1/2wk =

1

2

m∑
k=1

|λk|
(
1− ∆t

∆x
|λk|

)
α̂k
i−1/2wk. (2.97)

Alternative 1

Let us first assume that the time step∆t satisfies the CFL condition, or in other words, the waves from
adjacent interfaces xi±1/2 cross the line tn+1 inside the interval [xi−3/2, xi+3/2]. Let us introduce the
variable change (see § 1.1.4)

s = L · q

We use the same reasoning as in § 2.8.1. Let us make a second-order expansion of s(x, t+∆t) and
make use of Eq. (2.90) to link time and space derivatives:

s(x, tn+1 −∆t) = s(x, tn+1)−∆t
∂s

∂t
(x, tn+1) +

1

2
∆t2

∂2s

∂t2
(x, tn+1) +O(∆t2)

= s(x, tn+1)−∆tΛ · ∂s
∂x

(x, tn+1)−
1

2
∆t2Λ2 · ∂

2s

∂x2
(x, tn+1)

Integration of this equation over [xi−1/2, xi+1/2] leads to

L. · (Qn+1
i −Qn

i ) =
∆t

∆x
Λ ·
∫ xi+1/2

xi−1/2

∂s

∂x
(x, tn+1)dx+

1

2

∆t2

∆x
Λ2 ·

∫ xi+1/2

xi−1/2

∂2s

∂x2
(x, tn+1)dx. (2.98)

We can express s(x, tn+1) as a function of what happened at time tn:

s(x, tn+1) = L · q̃(x− λk∆t, t) =
m∑
k=1

qk(x− λk∆t, t)vk.
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We can express the integral terms of Eq. (2.98) as∫ xi+1/2

xi−1/2

∂

∂x
s(x, tn+1)dx =

m∑
k=1

vk

∫ xi+1/2

xi−1/2

∂

∂x
q̃k(x− λk∆t, tn)dx,

=
m∑
k=1

vk

∫ xi+1/2−λk∆t

xi−1/2−λk∆t

∂

∂x
q̃k(x, tn)dx. (2.99)

Given that the function q̃k is discontinuous, the jumps are

Jq̃kK = Qn
i,k −Qn

i−1,k −
∆x

2
(ai−1,k + ai,k) and Jq̃′kK = ai,k − ai−1,k,

for λk > 0, whereas for λk < 0 we have:

Jq̃kK = Qn
i+1,k −Qn

i,k −
∆x

2
(ai+1,k + ai,k) and Jq̃′kK = ai+1,k − ai,k,

We deduce that for λk > 0, we have∫ xi+1/2

xi−1/2

∂

∂x
s(x, tn+1)dx =

m∑
k=1

(
Qn

i,k −Qn
i−1,k + (ai,k − ai−1,k)

∆x

2
− (ai,k − ai−1,k)λk∆t

)
vk,

(2.100)
whereas for λk < 0, we have

m∑
k=1

(
Qn

i+1,k −Qn
i,k + (ai,k − ai+1,k)

∆x

2
+ (ai,k − ai+1,k)λk∆t

)
vk. (2.101)

For the second derivative, we have∫ xi+1/2

xi−1/2

∂2

∂x2
s(x, tn+1)dx =

m∑
k=1

(ai,k − ai−1,k)vk for λk > 0, (2.102)

=
m∑
k=1

(ai+1,k − ai,k)vk for λk < 0, (2.103)

By substituting Eqs. (2.100)–(2.102) into Eq. (2.98), we find that for λk > 0, the second-order (in time)
approximation of Qn+1

i is given by:

Qn+1
i,k = Qn

i,k −
λk∆t

∆x
(Qn

i,k −Qn
i−1,k)−

1

2

λk∆t

∆x
(∆x− λk∆t)(ai,k − ai−1,k),

while for λk < 0, we have

Qn+1
i,k = Qn

i,k −
λk∆t

∆x
(Qn

i+1,k −Qn
i,k) +

1

2

λk∆t

∆x
(∆x+ λk∆t)(ai+1,k − ai,k).

We can provide a vector form

Qn+1
i = Qn

i − ∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
, (2.104)

where the flux is
F n

i−1/2 = A+ ·Qn
i−1 +A− ·Qn

i + F̂
n
i−1/2 (2.105)

and the flux correction F̂
n
i−1/2 is

F n
i−1/2 =

1

2
|A+| ·

(
1− |A|∆t

∆x

)
· (∆xai−1/2) +

1

2
|A−| ·

(
1− |A|∆t

∆x

)
· (∆xai+1/2). (2.106)

If we select the upwind slope ∆xai−1/2 = ∆Qi−1/2, then the flux function takes the form

F n
i−1/2 =

1

2
|A+| ·

(
1− |A|∆t

∆x

)
·∆Qi−1/2 +

1

2
|A−| ·

(
1− |A|∆t

∆x

)
·∆Qi+1/2 (2.107)

This form shows differences with the Lax-Wendroff expression (2.95) in that it depends on the propa-
gation direction.
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Alternative 2

In § 2.8.1, we presentedAlternative 3, where the Sharpclawmethodwas outlined. Generalising Eq. (2.86)
leads to a system of coupled ordinary differential equations:

∂Qi

∂t
= − 1

∆x

(
A+ ·∆qi−1/2 +A− ·∆qi+1/2 +A ·∆qi

)
for 1 ≤ i ≤ n. (2.108)

where ∆qi−1/2 = q+i−1/2 −∆qli−1/2 and ∆qi = q−i+1/2 − q+i+1/2 (see Fig. 2.9 for the notation).

Note that this equation can be obtained heuristically in a quite general way. The time-marching
algorithm is

Qn+1
i = Qn

i − ∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
, (2.109)

and in the limit of ∆t → 0, we have:

∂Qi

∂t
= − 1

∆x

(
F i+1/2 − F i−1/2

)
, (2.110)

where the flux are given by
F i−1/2 = A · q↓i−1/2.

where q↓i−1/2 is the value of q along the interface x = xi−1/2. At short times δt ≪ 1, this interface
value is

q↓i−1/2(δt) = q0i−1/2 + δt∂tq
↓
i−1/2(0) +O(δt2),

where the leading-order term q0i−1/2 is the solution to the Riemann problem where the left and right
states are q−i−1/2 and q+i−1/2 (see Eq. (1.35)):

q0i−1/2 = q+i−1/2 −
∑

k: λk>0

W k
i−1/2.

Similarly, at the interface x = xi−1/2, we have (see Eq. (1.36)):

q0i+1/2 = q−i+1/2 +
∑

k: λk<0

W k
i+1/2.

To leading order in time, the interfaces fluxes are thus:

F i−1/2 =A ·

q+i−1/2 −
∑

k: λk>0

W k
i−1/2

 = A · q+i−1/2 −A+ ·∆qi−1/2,

F i+1/2 =A ·

q−i+1/2 +
∑

k: λk<0

W k
i+1/2

 = A · q−i+1/2 +A− ·∆qi−1/2.

Taking the flux difference leads to the system of equations (2.108).

2.8.3 Extension to nonlinear equations

High-resolutions methods developed for linear systems can be extended to nonlinear systems. This
extension does cause trouble when the solutions involve shock waves, but may be more tricky when
they involve rarefaction waves, in particular transonic waves. They take the form

Qn+1
i = Qn

i − ∆t

∆x

(
A−∆Qn

i+1/2 +A+∆Qn
i−1/2

)
− ∆t

∆x

(
F̂

n
i+1/2 − F̂

n
i−1/2

)
, (2.111)
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where the operators A± are defined by Eqs. (2.46) and (2.46). When the solution does not involve a
transonic wave, it can be computed using Eqs. (2.48) and (2.49)

A−∆Qn
i+1/2 =

Mw∑
k=1

s−k,i+1/2W
n
k,i+1/2, (2.112)

A+∆Qn
i−1/2 =

Mw∑
k=1

s+k,i−1/2W
n
k,i−1/2, (2.113)

where Mw is the number of waves (in most cases Mw = m) and ski−1/2 is speed of the kth wave at
xi−1/2. An entropy fix is needed to handle transonic waves properly.

Equation (2.111) also involves the flux correction F̂
n
i+1/2:

F̂
n
i+1/2 =

1

2

Mw∑
k=1

|ski−1/2|
(
1− ∆t

∆x
|ski−1/2|

)
W̃

k
i−1/2 (2.114)

where W̃ k
i−1/2 is the limited version of the kth wave W k

i−1/2 obtained by comparing this wave with
the jumpW k

I−1/2 in the upwind direction (I = i−1 is ski−1/2 > 0 and I = i+1 is ski−1/2 < 0) (LeVeque,
2002, see Chaps. 6 and 15). Here arises a problem specific to nonlinear systems. Generally, the vectors
W k

I−1/2 and W k
i−1/2 are not collinear, which makes it difficult to compare their components in the

limiter function (LeVeque, 2002, see Sec. 9.13). A strategy used in Clawpack to solve this issue is to
project the vector W k

I−1/2 onto W k
i−1/2 and compare their components.

2.9 Source term

We are concerned with the following hyperbolic equation with a source term:

∂

∂t
q +

∂

∂x
f(q) = S, (2.115)

where q is a vector with m components representing the unknowns, f is the flux function, and S is
the source term, possibly a function of q, its spatial derivatives, and position x.

2.9.1 Fractional-step method

One strategy to solve Eq. (2.115) is the fractional-step method, which involves splitting the problem
into subproblems:

• Solving the homogenous equation ∂tq + ∂xf(q) = 0.

• Updating the solution by solving the ordinary differential equation

dq
dt = S(q).

This method is first-order accurate (in time) regardless of the accuracy of each method used for solving
the subproblems. For instance, if we want to solve the linear advection equation with a source term

∂

∂t
q + ū

∂

∂x
q = S(q), (2.116)
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then combining the upwind method for the first subproblem and the forward Euler method for the
second one leads to consider the following set of equations involving an intermediate state Q∗

i :

Q∗
i = Qn

i − ū∆t

∆x
(Qn

i −Qn
i−1)

Qn+1
i = Q∗

i +∆tS(Q∗
i ).

2.9.2 Strang splitting method

This method used an intermediate time step ∆t/2, we start by solving the first subproblem with this
time step to obtain the intermediate state Q∗. We then solve the second subproblem over the full time
step ∆t, with Q∗ as the initial value and obtain Q∗∗, and we eventually return to the first subproblem
and solve it again over the time step ∆t/2 with Q∗∗ as the initial value. This method is second-order
accurate (in time).

If we take the example of linear advection (2.116) again, these three steps leads to the following
scheme:

Q∗
i = Qn

i − ū∆t

2∆x
(Qn

i −Qn
i−1)

Q∗∗
i = Q∗

i +∆tS(Q∗
i ),

Qn+1
i = Qn

i − ū∆t

2∆x
(Q∗

i −Q∗
i−1).

2.9.3 Stiff source terms and implicit methods

When the second subproblem involves a stiff 3 differential equation, it may be necessary to use an
implicit method for solving the second subproblem. For simple source terms, the trapezoidal method
is usually efficient:

Qn+1
i = Q∗

i +
∆t

2
(S(Q∗

i ) + S(Qn+1
i ). (2.117)

This method usually does not generate insurmountable problems since there is no spatial coupling,
and thus Eq. (2.117) can be solved in one time step. The Bank–Coughran–Fichtner method (also called
TR-BDF2 method) offers better performances. It is based on a two-stage Runge–Kutta approach:

Q∗∗
i = Q∗

i +
∆t

2
(S(Q∗

i ) + S(Q∗∗
i )

Qn+1
i =

1

3

(
4Q∗∗

i −Q∗
i−1 +∆tS(Qn+1

i )
)
.

When the source term involves high-order spatial derivatives of q (e.g., diffusive terms), the implicit
method usually requires more work. For instance, if the source term involves diffusion

∂

∂t
q + ū

∂

∂x
q = µ

∂2

∂x2
q, (2.118)

with µ a constant, then the spatial discretisation of the second-order derivative involves the neighbour-
ing cells

∂2

∂x2
q ≈ Qi−1 − 2Qi +Qi+1

∆x2
,

3Loosely speaking, stiff equations may have solutions that exhibit significant variations over short distances.
Explicit methods are usually not efficient for handling these equations. Indeed, explicit methods usually requires
to select time steps ∆t = O(∆x2) to be stable.
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and therefore the trapezoidal equation (2.117) turns into the Crank-Nicolson method

Qn+1
i = Q∗

i + µ
∆t

2

(
Qn+1

i−1 − 2Qn+1
i +Qn+1

i+1

∆x2
+

Q∗
i−1 − 2Q∗

i +Q∗
i+1

∆x2

)
. (2.119)

This method can be still improved by using the TR-BDF2 method rather than the trapezoidal equation.

2.9.4 Well-balanced algorithms

The hyperbolic equation (2.118) with a nonzero source term admits a steady-state solution qss, which
is the solution to the ordinary differential equation

d
dxf(qss) = S(qss). (2.120)

Time-marching algorithms may find the right steady-state solution, but as the advection and sources
are handled separately in two distinct subproblems, time-marching algorithms may not converge, but
oscillate in time around the steady-state solution.

This issue has led to the development of well-balanced algorithms. An algorithm is said to be well-
balanced if it is able to provide not only the time-dependent solution to a boundary initial value problem,
but also the steady-state solution.

2.10 Boundary conditions

There is a large literature on boundary conditions for hyperbolic equations: existence and uniqueness
of solutions, typology of boundary conditions, numerical implementation of boundary conditions, etc.
We will not deal with all these issues here, but we will assume that the (physical) boundary conditions
of the domain are known and that we are trying to write them in a numerical form consistent with the
finite-volume method. In Clawpack, the strategy adopted is to extend the computational domain by
using ghost cells (see 2.11). In the general case, we need mbc = 2 ghost cells for each boundary so that
we can use the high-resolution methods seen in § 2.8.

Figure 2.11 Computational grid and its extension to include ghost cells. The yellow-coloured area
represents the computational domain [a, b], while the green-coloured areas show the extended domain
for handling the boundary conditions.
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2.10.1 Periodic conditions

Periodic conditions imply that what goes out of the interval at x = b must enter from the left into
x = a. When mbc = 2 ghost cells are used, this condition on the left of the computational domain can
be written as:

Q−1 = QN−1 and Q0 = QN ,

while on its right, it writes
QN+1 = Q1 and QN+2 = Q2.

2.10.2 Extrapolation

In many (if not most) problems, the computational domain includes only a portion of the physical space
in which the physical process studied takes place. Its extension is thus often arbitrary, and the bound-
aries conditions required mathematically and numerically to solve the problem do are not physical, but
artificial. We refer to these artificial boundaries as transmissive, absorbing or non-reflecting boundary
conditions (LeVeque, 2002; Toro, 2009). Wewould like thewaves to cross these boundaries, when passing
out of the computational domain, without generating disturbances or spurious reflections. Problems
may arise whenever the characteristic speeds at the boundary take positive and negative values (like
in subcritical flow problems), implying that there are incoming waves whose characteristics are fixed
by what happens outside the computational domain. The simplest method to set appropriate boundary
conditions is to assume that the solution behaves smoothly near boundaries, and thus its values can be
obtained by extrapolating those determined in the computational domain.

We could determine the value QN+1 by assuming that the solution can be continued by mere
extrapolation:

QN+1 = QN +
QN −QN−1

∆x
∆x = 2QN −QN−1,

which is the discretisation of the first-order expansion q(x + dx) = q(x) + q′(x)dx. First-order ex-
trapolation can lead to stability problems and is generally not recommended (LeVeque, 2002). Instead,
a zero-order extrapolation is a simpler technique:

QN+1 = QN and QN+2 = QN

This strategy is often effective, but sometimes it may fail to produce the right result.

2.10.3 Solid Wall

One-dimensional equations

Let us consider that at the left boundary x = a, there is a solid wall and q vanishes at this point:

q(a, t) = 0.

For one-dimensional problem associated with a positive eigenvalue at x = a (incoming wave with
velocity λ(a, t) > 0), then we just have to set

Q0 = 0.

In the opposite case (outgoing wave with velocity λ(a, t) < 0), then there is no inflow, and we can use
a zero-order extrapolation:

Q0 = Q1.
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Systems of linear equations

For multidimensional problems, more work is required. We will outline a technique for implementing
boundary conditions representing the wall condition, which is effective for the Euler and Saint-Venant
equations as well as a number of systems of equations in fluid mechanics. Let us assume that one of
the unknowns q2 is velocity u while the other q1 is pressure p (or depth h). LeVeque (2002) noted that
when extending the computational domain to the left by setting

u(x, t) = −u(−x, t) and p(x, t) = p(−x, t) for x ≤ a

then we have
u(a, t) = −u(−a, t)

and thus
u(a, t) = 0.

In that case, the ghost cells are defined as follows:

Q1
0 = Q1

1 and Q2
0 = −Q2

1, (2.121)

and
Q1

−1 = Q1
2 and Q2

−1 = −Q2
2. (2.122)

The result can be generalized to more complicated boundary conditions when the governing equa-
tions involve a (linearised) Jacobian matrix in the form

A =

[
ua p
q u

]
(2.123)

associated with eigenvalues λ1 = ua −
√
pq and λ2 = ua +

√
pq, left and right eigenvectors

v1 =
1

2

[
−
√
q/p
1

]
, v2 =

1

2

[√
q/p
1

]
, w1 =

[
−
√

p/q
1

]
and w2 =

[√
p/q
1

]
,

where ua, p, and q are constants. Typical examples include the shallowwater and the acoustic equations.
We would like to solve the Riemann problem at x = a (see Fig. 2.12) and determine the intermediate
state Q∗.

From Eq. (1.36), we can connect the intermediate Q∗ = (Q1
∗, Q

2
∗) to the right state:

Q∗ = Q1 − α2w2,

where α2 is the coefficient satisfying:

α = (α1, α2) = L ·∆Q where ∆Q = Q1 −Q0

Let us assume that there is no variation in the first component of Q∗ (zero-order extrapolation):

Q1
0 = Q1

1 ⇒ ∆Q1 = 0.

Let us now focus on the second component of Q∗ (carrying information on the velocity u):

Q2
∗ = Q2

1 − α2w
2
2 = Q2

1 −
1

2
(Q2

1 −Q2
0). (2.124)

If we want to impose the zero velocity at x = a, then we must set Q2
∗ = 0 and Eq. (2.124) tells us

that
Q2

1 −
1

2
(Q2

1 −Q2
0) = 0 ⇒ Q2

0 = −Q2
1
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Figure 2.12 Riemann problem at the boundary x = a.

consistently with what is given by Eq. (2.121). If we now impose an oscillating wall as the left boundary
condition

u(a, t) = U(t),

with U the wall velocity, then we must set Q2
∗ = U and Eq. (2.124) tells us that

Q2
1 −

1

2
(Q2

1 −Q2
0) = U ⇒ Q2

0 = 2U −Q2
1

Systems of nonlinear equations

We can establish a similar result when knowing the rarefaction wave’s structure. Let us take the exam-
ple of the Saint-Venant equations (see Fig. 2.13). We assume that the intermediate stateQ∗ = (h∗, h∗ū∗)
is connected to the right state Q1 = (h1, h1ū1) by a 2-rarefaction wave (1.128):

ū1 − 2(
√

gh1 −
√
gh∗) = ū∗,

and is connected to left right state Q0 = (h0, h0ū0) by a 1-rarefaction wave (1.128):

ū0 + 2(
√
gh0 −

√
gh∗) = ū∗.

If we add these two equations, then we obtain

ū1 + ū0 + 2
√

gh0 − 2
√
gh1 = 2ū∗.

If we set h0 = h1, then we must define the boundary condition for ū0

ū0 = 2ū∗ − ū1.

If the boundary involves a solid wall moving at velocity U(t), then ū∗ = U , and thus we find again Eq.
(2.121)

ū0 = 2U − ū1.
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Figure 2.13 Riemann problem at the boundary x = a with an intermediate state separated from the
left and right states by rarefaction waves.

2.10.4 Inflow boundary conditions

One-dimensional equations

Let us consider that we impose a Dirichlet boundary condition at the left boundary (see Fig. 2.14):

q(a, t) = g(t). (2.125)

We assume that the problem is linear or linearised so that information is propagated at constant
velocity λ and the characteristic curves are straight lines x = x0 + λt. Setting the boundary value Q0

amounts to determining the integral

Qn
0 =

1

∆x

∫ a

a−∆x
q(x, tn)dx. (2.126)

For any characteristic x = x0 + λ(t− tn) with a−∆x < x0 < a, the characteristic curve crosses the
line x = a at time

a = x0 + λ(t− tn) ⇒ t = tn +
a− x0

λ
.

The value of q is constant and given by g(t). We can put the integral (2.126) in the following form:

Qn
0 =

1

∆x

∫ a

a−∆x
g

(
tn +

a− x0
λ

)
dx0.

We make the following change of variable

τ = tn +
a− x0

λ
⇒ dτ =

dx0
λ

.

This shows that the value of Qn
0 is

Qn
0 =

λ

∆x

∫ tn+∆x/λ

tn

g (τ) dτ.



2.11 Implementation in Clawpack 73

Figure 2.14 Dirichlet condition q(a, t) = g(t) imposed at x = a.

LeVeque (2002) suggests approximating this integral by using the mean value theorem (evaluated at the
midpoint tn +∆x/(2λ):

Qn
0 = g

(
tn +

∆x

2λ

)
. (2.127)

Similarly we have:

Qn
−1 = g

(
tn +

3∆x

2λ

)
. (2.128)

2.11 Implementation in Clawpack

Clawpack is a Fortran-based library developed to solve hyperbolic partial differential equations in the
form:

κ
∂

∂t
q +∇ · f(q) = S, (2.129)

where κ is the capacity function (or constant), q the unknown, f the flux function, and S the source
term.

2.11.1 Clawpack installation

Prerequisites

Linux is best suited to run the Clawpack library. Installation requires a few additional libraries (see
www.clawpack.org/prereqs.html)

http://www.clawpack.org/prereqs.html
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• Compiler: gfortran (available from most linux distributions) or ifort (which needs a license, free
for academic activities).

• Python: version 3, scipy, numpy, pip, meson-python and git

• It can be useful to install anaconda. This environment makes it possible to manage the python
packages and offers several functionalities like jupyter (a system of Python-based notebooks
that can be read by a web browser), spyder (a scientific environment written for Python), R, and
julia. Jupyter notebooks available from github can be read locally on the computer or via a web
interface such as nbviewer.jupyter.org/.

Following the procedure with pip (see www.clawpack.org/installing.html) is usually the easy way to
install Clawpack:

81 pip install --src=$HOME/clawpack_src --user --no-build-isolation -e \
82 git+https://github.com/clawpack/clawpack.git@v5.9.2#egg=clawpack

Finally, it is necessary to edit the .bashrc file by providing the required environment variables
83 export CLAW=$HOME/clawpack-v5.9.2
84 export FC=gfortran

Build process

As of version 5.9.2, Clawpack used Meson-Python for the build process of the python modules. When
modifying the clawpack working directory (including updates or use of earlier versions of Clawpack),
the paths should be set properly by using the command (see /www.clawpack.org/installing_pip.html)

85 cd $CLAW
86 pip install --user --no-build-isolation -e ./

Makefile

Using the openmp library and specifying the number of threads, it is possible to make the Clawpack
computations much faster (see www.clawpack.org/openmp.html). This can be implemented by setting
the compiler flags in the prompt command:

87 export FFLAGS='-O2 -fopenmp' # or hardwire FFLAGS in the Makefile
88 make new
89 export OMP_NUM_THREADS=2

or directly in the Makefile:
90 export FFLAGS='-O2 -fopenmp' # or hardwire FFLAGS in the Makefile
91 make new
92 export OMP_NUM_THREADS=2

Similarly when using the Lapack or Blas library (linear algebra), it is possible to specify the appropriate
compiler flag in the Makefile:

93 FFLAGS ?= -O2 -fopenmp
94 OMP_NUM_THREADS=4

The following commands are implemented (the complete list is also available by executing the
command make␣help):

https://www.anaconda.com/download
https://nbviewer.jupyter.org/
http://www.clawpack.org/installing.html
http://www.clawpack.org/installing_pip.html#install-quick-all
https://www.clawpack.org/openmp.html
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• make␣new makes a new compilation of everything.

• make␣clobber deletes all the intermediary files (*.o, *.mo, output).

• make␣.output runs the code. The results are by default placed in the subdirectory named
_output.

• make␣.plots runs the code and plots the results using the python script setplot. The graphic
files are placed in the subdirectory named _plots.

• make␣.data provides the data files using the python script setrun.

2.11.2 Legacy Clawpack

In its original form developed by Randall LeVeque, Clawpack has been based on a set of Fortran 77
routines (LeVeque, 2002).

The main programme was originally located in the file driver.f. This file allocated storage for the
arrays used by Clawpack. This is now done automatically, and the user does not need to fill this file. This
programme then calls claw1ez, which reads the file claw.data created by the python script setrun.py (it
can be created by typing make .data).

The initial condition is contained in the file qinit.f. We should define the cell average valueQi over
the entire domain, but for a continuous function q, this average value is the value taken by q at xi (cell
midpoint): Qi = q(xi).

The initial conditions are processed in the file bc1.f. The type of boundary conditions is prescribed
in the file claw.data.

The Riemann solver is contained in the file rp1.f. The idea is to decompose any discontinuity into
a set of waves W k moving ar velocity sk (see § 2.3):

Qi −Qi−1 =

m∑
k=1

W k

avec m is the wave number (which is usually equal to the dimension of the system). For Godunov’s
method, the value Qi is updated as follows:

Qn+1
i = Qn

i − ∆t

∆x
(A+ ·∆Qi−1/2 +A− ·∆Qi+1/2),

where we distinguish between the left-going wave (coming from the right endpoint xi+1/2):

A+ ·∆Qi+1/2 =
∑
k

min(ski+1/2, 0)W
k
i+1/2,

and the right-going wave

A− ·∆Qi+1/2 =
∑
k

max(ski−1/2, 0)W
k
i−1/2,

The left-going wave is zero if ski+1/2 > 0 (because the wave moves only from right to left) and the
right-going wave is zero if ski−1/2 < 0.

The Riemann solver needs two input data: the two arrays ql and qr related to the values of q on
the left and right of every cell. High-resolution methods require further information. Note that for the
Riemann solver at the interface xi−1/2, we use the following notation for referring to cells i − 1 and
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i: qr(i-1,:)= qri−1/2 and ql(i-1,:)= qli−1/2, and in this notation, left and right refer to the left
and right of the cell i or i− 1, and not what happens relative to the interface.

The solver provides:

• the functions amdq (literally “a minus delta q”, which is the vector A− · ∆Qi+1/2) and apdq
(vecteur A+ ·∆Qi+1/2),

• wave (the wave W k
i−1/2), and

• s (the speed ski−1/2).

Caveat. Note4 that the Riemann problem at the interface xi−1/2 between cells i−1 and i has the
following input data (see Fig. 2.15):

• Left state: qRi−1 = qr(:, i-1).

• Right state: qLi−1 = ql(: ,i).

This notation is ambiguous since until now, ql has been used to denote the left state of a Riemman
problem, while qr denotes its right state.

Figure 2.15 Notation for the Riemann problem in Clawpack.

There are many other routines, which are not always required. They are called by the main driver
by default, but do not return anything. Among the most important:

• setprob.f: the routine claw1ez calls setprob.f before each execution, which makes it
possible to initialise some parameters.

• setaux.f: the routine claw1ez calls the routine setaux.f before each execution to initialise
the auxiliary variables (for instance, bed topography).

• b4step1.f: the routine claw1 calls the routine bc4step1.f before each step to perform
additional tasks.

• src1.f: if the equation involves a source term, this file is used to correct the solution to the
homogenous equation.

4See www.clawpack.org/riemann.html.

http://www.clawpack.org/riemann.html
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2.11.3 AMRClaw

AMRClaw is the Clawpack version that provides Adaptive Mesh Refinement (AMR) capabilities in 1, 2
or 3 space dimensions (Berger & LeVeque, 1998). Depending on the mesh refinement criteria (which
may be automatic or user-selected), the mesh may be locally refined to improve numerical accuracy.
Numerical solutions are recorded as a series of nested grids. Computation is done using a coarse mesh
when the solution behaves smoothly, and is done with finer resolution when this is locally required.
See the AMRClaw webpage for further information.

GeoClaw, based on the Clawpack library and devoted to large-scale free-surface flows over topog-
raphy, uses the AMR toolbox (George, 2006, 2008, 2011).

2.11.4 Pyclaw

Pyclaw is a python package that offers a convenient framework for pre- and post-processing informa-
tion, interfacing and running Clawpack or Sharpclaw (Ketcheson et al., 2012; Mandli et al., 2016). It
can call Fortran or Python routines. Interfaced with PyWENO and PETSc, Pyclaw provides extended
functionality in terms of parallel computing (Ketcheson et al., 2012). In particular, PyClaw can be run
in parallel using the PETSc library.

PyClaw includes two types of solvers:

• Classic solvers are those originally developed in Clawpack 4 (algorithms for solving one- to
three-dimensional problems).

• SharpClaw solvers are higher-order wave propagation routines usingWENO reconstruction and
Runge–Kutta integration, but reserved for one- and two-dimensional problems for the moment.

Solver initialisation takes one argument (the Riemann solver’s name). For instance, if one selects
riemann.acoustics_1D from the Riemann repository to solve one-dimensional acoustic problems,
then one can initialise the solver as follows

1 from clawpack import pyclaw
2 from clawpack import riemann
3 solver = pyclaw.ClawSolver1D(riemann.acoustics_1D)

and if one prefers the Sharpclaw solver
3 solver = pyclaw.SharpClawSolver1D(riemann.acoustics_1D)

If the solver is defined in a script or in a function, then one must initialise the ClawSolver object and
specify the number of equations and waves:

1 solver = pyclaw.ClawSolver1D(solver_name)
2 solver.num_waves = 1
3 solver.num_eqn = 1
4 solver.kernel_language = 'Python'

When using a Clawpack solver from the Riemann repository, the code automatically determines the
numbers of waves and equations. Fortran solvers can be used in python using the numpy command
f2py. See www.clawpack.org/pyclaw/problem.html and /www.clawpack.org/riemann.html for further
information to set up your own problem and your own Riemann solver.

It is also possible to call solvers written in fortran. To that end, the fortran file should first be
compiled using the numpy command called f2py to wrap fortran files to python. This command
compiles all sources and builds an extension module containing the wrappers. In a command prompt,
this achieved using the command

https://www.clawpack.org/amrclaw.html
https://pyweno.readthedocs.io/en/latest/tutorial.html
http://www.clawpack.org/pyclaw/parallel.html#parallel
https://numpy.org/doc/stable/f2py/
https://www.clawpack.org/pyclaw/problem.html
https://www.clawpack.org/riemann.html
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1 f2py -c my_riemann_solver.f90 -m solver_name

or it can be done in python

1 python -m numpy.f2py my_riemann_solver.f90 -m solver_name

If successful, the command generates a file like solver_name.cpython-39-x86_64-linux-gnu.so.
This file can then be imported in Pyclaw:

1 import solver_name
2 ...
3 solver.kernel_language = 'Fortran'
4 solver = pyclaw.ClawSolver1D(solver_name)

The classic and SharpClaw solvers have two important differences:

• The classic solver involves the integral of the source term over a step (implemented using
solver.step_source), whereas SharpClaw needs the instantaneous value of the source term
(implemented using solver.dq_src).

• The list of options and their possible values differ from one variant to the other.

See www.clawpack.org/pyclaw/solvers.html for further information.

A PyClaw simulation provides a set of frames, each one being the solution at a given time (depend-
ing on the selected number of outputs and final time). By default, these frames are written in a directory
named _outdir unless the option claw.output_format is set to None. If claw.keep_copy is
set to True, then output frames are also saved in memory in the list claw.frames. The solution is
available at any time from claw.frames[i].q where i the frame number (i = 0: initial condition,
i = −1 final state). See www.clawpack.org/pyclaw/output.html for further information.

Pyclaw simulations involve Solution objects, which evolve as a result of the action of a Solver object
depending on the Domain and State objects. A Pyclaw Solution comprises one or several Domain and
State objects (see Fig. 2.16). Each State object inhabits a Grid, composed of Dimension objects that
define the extents of the Domain. See www.clawpack.org/pyclaw/classes.html.

Domain

Grid

Solution

State A

State B

Figure 2.16 Pyclaw solution structure.

http://www.clawpack.org/pyclaw/solvers.html
http://www.clawpack.org/pyclaw/output.html
http://www.clawpack.org/pyclaw/classes.html
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2.11.5 Development version

A read-only development version of Clawpack can be created (see
www.clawpack.org/dev/developers.html) for those interested in testing the applications under
development.

To clone clawpack from github, use the following where you to create your development folder
1 git clone https://github.com/clawpack/clawpack.git
2 cd clawpack
3 git submodule init
4 git submodule update

You can then update clawpack to the most recent version
1 source pull_all.sh

For instance, if you want to install dclaw, then write
1 git clone https://github.com/geoflows/dclaw

2.11.6 Implementation of boundary conditions in Clawpack

Classic Clawpack

In the classic version of Clawpack, the boundary conditions are handled in the file bc1.f (one-
dimensional problems) or bc2.f (two-dimensional problems). A number of classic boundary con-
ditions are proposed:

• extrapolation,

• periodic, or

• wall.

It is possible to include a custom boundary conditions. The type of boundary condition is specified in
the setrun.py file. For instance, we want to use custom boundary conditions, we write:

1 clawdata.bc_lower[0] = 'user' # at xlower
2 clawdata.bc_upper[0] = 'user' # at xupper

In fortran, it is possible to use negative indices in arrays, and as a consequence, the notation is very
close to the mathematical one: Q−1 is denoted by q(i,−1)1≤i≤m. For instance, the period boundary
condition is written as:

1 dimension q(meqn,1-mbc:mx+mbc)
2 do ibc=1,mbc
3 do m=1,meqn
4 q(m,1-ibc) = q(m,mx+1-ibc)
5 end do
6 end do

Pyclaw

Pyclaw uses an extended array of q called qbc. If we assume that we use mbc = 2 ghost cells at each
boundary, then

http://www.clawpack.org/dev/developers.html
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• qbc[0] and qbc[1] represent the left boundary conditions.

• We have qbc[2]=q[0] and so on.

• qbc[-1] and qbc[-2] represent the right boundary conditions.

The boundary conditions are called in the setup routine:
1 solver.bc_lower[0] = pyclaw.BC.custom
2 solver.user_bc_lower = inlet_bc
3 solver.bc_upper[0] = pyclaw.BC.custom
4 solver.user_bc_upper = outlet_bc



CHAPTER3
Linear advection

3.1 Linear advection equation

3.1.1 Governing equation and solution

We are studying the linear advection equation

∂q

∂t
+ a

∂q

∂x
= 0, (3.1)

where a ̸= 0 is a constant called the advection velocity. The solution to the Riemann problem

q(x, 0) =

{
ql if x < 0
qr if x > 0

is straightforward

q(x, t) =

{
ql if x < at
qr if x > at

Equation (3.1) can be written in characteristic form

1

dt =
a

dx =
0

dq ,

and thus the solution is any function in the form

q(x, t) = F (x− at).

In particular, when the initial condition is q(x, 0) = q0(x), then

q(x, t) = q0(x− at). (3.2)

We can implement the method detailed in § 2.4.1 by defining the wave and fluctuations

Wi−1/2 = Qi −Qi−1, (3.3)
A+∆Qi−1/2 = σ̇+

i−1/2Wi−1/2, (3.4)

A−∆Qi+1/2 = σ̇−
i+1/2Wi+1/2, (3.5)

where σ̇+ = max(a, 0) and σ̇− = min(a, 0).

81
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3.1.2 Implementation in Clawpack

In the recent versions of Clawpack, any application needs a number of files (see § 2.11.2):

• The Makefile for linking the executables and running the code.

• Two python files: setrun.py generate the data needed by clawpack, while setplot.y spec-
ifies how to plot the numerical results. setrun.py generates two data files: setprob.data,
which contains model parameters (here the advection velocity a) and claw.data, which in-
cludes all the essential information needed by clawpack.

• The following fortran files:

– qinit.f90 provides the initial values
– setprob.f90 reads the model parameters from the file setprob.data.

Note that the Riemann solver uses the arrays ql and qr: ql(i) is the value of q on the left of the cell,
whereas qr(i) denotes the value of q on its right (see Fig. 2.15). The Riemann problem at the interface
xi−1/2 between cells i and i − 1 thus involves the difference between the left state ql(i-1,:) and
right state ql(i,:). This is why the wave is defined as wave(1, 1, i) = ql(1, i) − qr(1, i − 1) in the
following. This notation is potentially confusing because throughout this document, qr and ql refer to
the right and left states, respectively. This notation is consistent with the notation used in Fig. 2.9 (see
also the section devoted to high-resolution methods in § 2.8).

In classic Clawpack, the algorithm for the solver is quite simple.
1 ! =====================================================
2 subroutine rp1(maxm,meqn,mwaves,maux,mbc,mx,ql,qr,auxl,auxr,wave,s,amdq,

apdq)
3 ! =====================================================
4
5 implicit double precision (a-h,o-z)
6
7 dimension wave(meqn, mwaves, 1-mbc:maxm+mbc)
8 dimension s(mwaves,1-mbc:maxm+mbc)
9 dimension ql(meqn, 1-mbc:maxm+mbc)

10 dimension qr(meqn, 1-mbc:maxm+mbc)
11 dimension apdq(meqn, 1-mbc:maxm+mbc)
12 dimension amdq(meqn, 1-mbc:maxm+mbc)
13
14 ! # advection velocity:
15 ! # (should be set in setprob.f)
16 common /cparam/ a
17
18 ! # define the wave:
19 do 20 i = 2-mbc, mx+mbc
20
21 ! # Compute the waves.
22
23 wave(1,1,i) = ql(1,i) - qr(1,i-1)
24 s(1,i) = a
25 20 END DO
26
27
28 ! # compute the leftgoing and rightgoing flux differences:
29 ! # Note s(1,i) < 0 and s(2,i) > 0.
30
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31 do 220 m=1,meqn
32 do 220 i = 2-mbc, mx+mbc
33 amdq(m,i) = dmin1(0.d0,s(1,i))*wave(m,1,i)
34 apdq(m,i) = dmax1(0.d0,s(1,i))*wave(m,1,i)
35 220 END DO
36
37 return
38 end subroutine rp1

3.1.3 Example

Let us consider Eq. (3.1) over the [0, 1] interval with a = 0.5m·s−1. The boundary conditions are cyclic:

q(1, t) = q(0, t).

The initial condition is the superposition of a Gaussian and a unit box

q0 = exp
(
−β(x− x0)

2
)
+ U(x)

with β = 200 m−2 and x0 = 0.6 m, and

U(x) =

{
0 if x < 0.1 or x > 0.4
1 if 0.1 ≤ x ≤ 0.4

Figure 3.1 shows the comparison between the exact and numerical solutions.
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-- analytical solution

— Clawpack solution

Figure 3.1 Comparison of the numerical and analytical solutions at time t = 4 s. Computation with
n = 100 cells. We used a second-order scheme (Law–Wendrow–LeVeque).

Figure 3.1 compares the effects of three flux limiters on the numerical solution. In this test, the MC
and superbee limiters perform better than the mindmod limiter, and naturally far better that the simple
Godunov scheme.
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Figure 3.2 Comparison of the numerical and analytical solutions at time t = 4 s. Computation with
n = 100 cells. We tested a first-order Godunov scheme (no limiter) and three second-order schemes
(limiters: MC, minmod, and superbee).
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3.1.4 Implementation in AMRClaw

AMRClaw allows us to compute high-accuracy solutions by refining the mesh locally. Using AMRClaw
requires a few changes in the setup files:

• Makefile: the variables CLAW_PKG and EXE must be set to xamr and amrclaw\verb, respec-
tively.

• Setup.py: a number of variables related to mesh refinement must be defined in the setrun.py file.
See the AMRClaw webpage devoted to this file.

See also the AMRClaw webpage for general information.

Here we show an example of numerical solution obtained using AMRClaw with three grid levels.
This is the same example as the one seen above. Figure 3.3 shows that AMRClaw performs better than
the classic Clawpack version (see Figure 3.2).

https://www.clawpack.org/setrun_amrclaw.html
https://www.clawpack.org/amrclaw.html
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Figure 3.3 Comparison of the numerical and analytical solutions at time t = 4 s. Computation with
n = 100 cells. We used AMRClaw with three grids. (a) Comparison of the numerical solution with the
exact solution. (b) Coarse mesh (grid level 1) with ∆x = 0.02 m. (c) Medium mesh (grid level 2) with
∆x = 0.005 m. (b) Fine mesh (grid level 3) with ∆x = 0.00125 m.
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3.1.5 Implementation in Pyclaw

Classic solvers

To solve a problem using Pyclaw, we will define the following objects:

• The controller handles the running, output, and can be used for plotting the solution (we can
run Pyclaw without using a controller, but it makes life easier).

• The time interval over which the solution is computed.

• The solver for the governing equation to be solved. In Pyclaw, a number of solvers are available.
They are defined by the class ClawSolverxD or SharpClawSolverxD, where x = 1, 2, 3 is
the problem’s spatial dimension. SharpClaw algorithms involve on WENO reconstruction and
Runge-Kutta time stepping (Ketcheson et al., 2013). User-defined solvers can also be used.

• The computational domain is the domain over which the problem is solved.

• The solution is an object that initially contains the initial data, and then after iterations, the
solutions at specific times.

Contrary to the classic Clawpack notation, Pyclaw considers that the variables q_l and q_r refer to
the states left and right states at each interface xi−1/2. This is a source of confusion when working with
both classic Clawpack and Pyclaw.

1 %matplotlib inline
2
3 from numpy import sqrt, exp, cos, logical_and, where
4 from clawpack import riemann
5 from clawpack import pyclaw
6
7 def advection(q_l,q_r,aux_l,aux_r,problem_data):
8 r"""
9 1d linear advection riemann solver

10 """
11 import numpy as np
12 num_eqn = 1
13 num_waves = 1
14
15 # Convenience
16 num_rp = q_l.shape[1]
17
18 # Return values
19 wave = np.empty( (num_eqn, num_waves, num_rp) )
20 s = np.empty( (num_waves, num_rp) )
21 amdq = np.empty( (num_eqn, num_rp) )
22 apdq = np.empty( (num_eqn, num_rp) )
23
24 # Local values
25 delta = np.empty(np.shape(q_l))
26
27 delta = q_r - q_l
28 a = problem_data['a']
29
30 # Compute the wave
31 # 1-Wave
32 wave[0,0,:] = delta
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33 s[0,:] = a
34
35 # Compute the left going and right going fluctuations
36 for m in range(num_eqn):
37 amdq[m,:] = min(a,0) * wave[m,0,:]
38 apdq[m,:] = max(a,0) * wave[m,0,:]
39
40 return wave, s, amdq, apdq
41
42
43 def setup(outdir='./_output', output_style=1):
44
45 solver = pyclaw.ClawSolver1D(advection)
46 solver.num_waves = 1
47 solver.num_eqn = 1
48 solver.kernel_language = 'Python'
49 solver.limiters = pyclaw.limiters.tvd.MC
50 solver.bc_lower[0] = pyclaw.BC.periodic
51 solver.bc_upper[0] = pyclaw.BC.periodic
52 solver.order = 1 #1: Godunov, 2: Lax-Wendrow-LeVeque
53
54 x = pyclaw.Dimension(0.0, 1.0, 100, name='x')
55 domain = pyclaw.Domain(x)
56 num_eqn = 1
57
58 state = pyclaw.State(domain, num_eqn)
59
60 a = 0.5 # advection velocity
61 state.problem_data['a'] = a
62
63 xc = domain.grid.x.centers
64 beta = 100
65 gamma = 0
66 x0 = 0.75
67 state.q[0, :] = exp(-beta * (xc-x0)**2) + where(logical_and(xc > 0.1,

xc < 0.4), 1, 0)
68
69 claw = pyclaw.Controller()
70 claw.solution = pyclaw.Solution(state, domain)
71 claw.solver = solver
72 claw.outdir = outdir
73 claw.output_style = output_style
74 claw.tfinal = 4.0
75 claw.num_output_times = 10
76 claw.keep_copy = True
77 #claw.setplot = setplot
78
79 return claw
80
81
82 def setplot(plotdata):
83 """
84 Plot solution using VisClaw.
85 """
86 plotdata.clearfigures() # clear any old figures,axes,items data
87
88 plotfigure = plotdata.new_plotfigure(name='q', figno=1)
89
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90 # Set up for axes in this figure:
91 plotaxes = plotfigure.new_plotaxes()
92 plotaxes.ylimits = [-.2,1.0]
93 plotaxes.title = 'q'
94
95 # Set up for item on these axes:
96 plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
97 plotitem.plot_var = 0
98 plotitem.plotstyle = '-o'
99 plotitem.color = 'b'

100 plotitem.kwargs = {'linewidth':2,'markersize':5}
101
102 return plotdata
103
104
105 def qtrue(x,t):
106 """
107 The true solution, for comparison.
108 """
109 from numpy import mod, exp, where, logical_and
110 beta = 100
111 gamma = 0
112 x0 = 0.75
113 u = claw.solution.state.problem_data['a']
114 xm = x - u*t
115 xm = mod(xm, 1.) # because of periodic boundary conditions
116 q = exp(-beta * (xm-x0)**2) + where(logical_and(xm > 0.1, xm < 0.4),

1, 0)
117 return q

We run the code
1 claw = setup()
2 claw.run()
3
4 from clawpack.visclaw import data
5 from clawpack.visclaw import frametools
6 plotdata = data.ClawPlotData()
7 plotdata.setplot = setplot
8 claw.plotdata = frametools.call_setplot(setplot,plotdata)
9

10 frame = claw.load_frame(10)
11 f=claw.plot_frame(frame)

Next, we plot the solution for time t = 2 s. The figure compares the numerical and exact solutions
at time t = 2 s. As we used a first-order scheme (Godunov), the numerical viscosity smooths out sharp
variations in q.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 plt.rcParams['text.usetex'] = True
4 frame = claw.frames[5]
5 dt = claw.tfinal/claw.num_output_times
6 t = dt*5
7 true = qtrue(x,t)
8 fig, ax = plt.subplots(figsize=(5, 2.7))
9 w = frame.q[0,:]

10 x = frame.state.grid.c_centers
11 x = x[0]
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12 ax.plot(x, w, label='pyclaw')
13 ax.plot(x, true, ':',label='exact solution')
14 ax.legend(loc='right')
15 ax.set_xlabel(r'$x$')
16 ax.set_ylabel(r'$q$')
17 plt.savefig('frameAdvection5.pdf')
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We can also plot an animation:

1 nsimul=np.size(claw.frames)
2 figs = []
3 for i in range(nsimul):
4 fig = plt.figure(figsize=(5,3))
5 frame = claw.frames[i]
6 w = frame.q[0,:]
7 x = frame.state.grid.c_centers
8 x = x[0]
9 dt = claw.tfinal/claw.num_output_times

10 t = dt*i
11 true = qtrue(x,t)
12 plt.plot(x, w)
13 plt.plot(x, true, '--',color = 'r')
14 figs.append(fig)
15 plt.close(fig)
16 from clawpack.visclaw import animation_tools
17 animation_tools.interact_animate_figs(figs)
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Sharpclaw solvers

We can also use Sharpclaw solvers by initiating the solver
solver␣=␣pyclaw.SharpClawSolver1D() and specifying its type (e.g., here the custom
solver advection). A number of additional variables must be set, in particular the WENO order
(defined by weno_order) and the time integrator (defined by time_integrator). See the Clawpack
documentation for further information on these variables. Here we provide an example with the
third-order strong stability-preserving method SSP33 proposed by Shu and Osher (Ketcheson et al.,
2011).

1 %matplotlib inline
2
3 from numpy import sqrt, exp, cos, logical_and, where
4 from clawpack import riemann
5 from clawpack import pyclaw
6
7 def advection(q_l,q_r,aux_l,aux_r,problem_data):
8 r"""
9 1d linear advection riemann solver

10 """
11 import numpy as np
12 num_eqn = 1
13 num_waves = 1
14
15 # Convenience
16 num_rp = q_l.shape[1]
17
18 # Return values
19 wave = np.empty( (num_eqn, num_waves, num_rp) )
20 s = np.empty( (num_waves, num_rp) )
21 amdq = np.empty( (num_eqn, num_rp) )
22 apdq = np.empty( (num_eqn, num_rp) )
23
24 # Local values
25 delta = np.empty(np.shape(q_l))
26
27 delta = q_r - q_l
28 a = problem_data['u']
29
30 # Compute the wave
31 # 1-Wave
32 wave[0,0,:] = delta
33 s[0,:] = a
34
35 # Compute the left going and right going fluctuations
36 for m in range(num_eqn):
37 amdq[m,:] = min(a,0) * wave[m,0,:]
38 apdq[m,:] = max(a,0) * wave[m,0,:]
39
40 return wave, s, amdq, apdq
41
42 def setup(outdir='./_output', output_style=1):
43
44 solver = pyclaw.SharpClawSolver1D()
45 solver.rp = advection
46 solver.weno_order = 5
47 solver.lim_type = 2
48 solver.time_integrator = 'SSP33'

 https://depts.washington.edu/clawpack/sampledocs/v570_docs/v5.4.1/pyclaw/solvers.html
 https://depts.washington.edu/clawpack/sampledocs/v570_docs/v5.4.1/pyclaw/solvers.html
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49 solver.cfl_max = 0.5
50
51 solver.num_waves = 1
52 solver.num_eqn = 1
53 solver.kernel_language = 'Python'
54 solver.limiters = pyclaw.limiters.tvd.superbee
55 solver.bc_lower[0] = pyclaw.BC.periodic
56 solver.bc_upper[0] = pyclaw.BC.periodic
57
58 x = pyclaw.Dimension(0.0, 1.0, 100, name='x')
59 domain = pyclaw.Domain(x)
60 num_eqn = 1
61
62 state = pyclaw.State(domain, num_eqn)
63
64 a = 0.5 # advection velocity
65 state.problem_data['u'] = a
66
67 xc = domain.grid.x.centers
68 beta = 100
69 gamma = 0
70 x0 = 0.75
71 state.q[0, :] = exp(-beta * (xc-x0)**2) + where(logical_and(xc > 0.1,

xc < 0.4), 1, 0)
72
73 claw = pyclaw.Controller()
74 claw.solution = pyclaw.Solution(state, domain)
75 claw.solver = solver
76 claw.outdir = outdir
77 claw.output_style = output_style
78 claw.tfinal = 4.0
79 claw.num_output_times = 10
80 claw.keep_copy = True
81 #claw.setplot = setplot
82
83 return claw
84
85
86 def setplot(plotdata):
87 """
88 Plot solution using VisClaw.
89 """
90 plotdata.clearfigures() # clear any old figures,axes,items data
91
92 plotfigure = plotdata.new_plotfigure(name='q', figno=1)
93
94 # Set up for axes in this figure:
95 plotaxes = plotfigure.new_plotaxes()
96 plotaxes.ylimits = [-.2,1.0]
97 plotaxes.title = 'q'
98
99 # Set up for item on these axes:

100 plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
101 plotitem.plot_var = 0
102 plotitem.plotstyle = '-o'
103 plotitem.color = 'b'
104 plotitem.kwargs = {'linewidth':2,'markersize':5}
105
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106 return plotdata
107

We run the code.

1 claw = setup()
2 claw.run()
3
4 from clawpack.visclaw import data
5 from clawpack.visclaw import frametools
6 plotdata = data.ClawPlotData()
7 plotdata.setplot = setplot
8 claw.plotdata = frametools.call_setplot(setplot,plotdata)
9

10 frame = claw.load_frame(10)
11 f=claw.plot_frame(frame)

We can eventually plot the solution at time t = 4 s and compare with the exact solution.

1 def qtrue(x,t):
2 """
3 The true solution, for comparison.
4 """
5 from numpy import mod, exp, where, logical_and
6 beta = 100
7 gamma = 0
8 x0 = 0.75
9 u = claw.solution.state.problem_data['u']

10 xm = x - u*t
11 xm = mod(xm, 1.) # because of periodic boundary conditions
12 q = exp(-beta * (xm-x0)**2) + where(logical_and(xm > 0.1, xm < 0.4),

1, 0)
13 return q
14
15 %matplotlib inline
16 import numpy as np
17 import matplotlib.pyplot as plt
18 plt.rcParams['text.usetex'] = True
19 frame = claw.frames[5]
20 dt = claw.tfinal/claw.num_output_times
21 t = dt*5
22 x = frame.state.grid.c_centers
23 x = x[0]
24 true = qtrue(x,t)
25 fig, ax = plt.subplots(figsize=(5, 2.7))
26 w = frame.q[0,:]
27
28 ax.plot(x, w, label='Sharpclaw sol.')
29 ax.plot(x, true, ':',label='exact solution')
30 ax.legend(loc='right')
31 ax.set_xlabel(r'$x$')
32 ax.set_ylabel(r'$q$')
33 plt.savefig("frameAdvectionSharpClaw.pdf")
34
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3.2 Acoustic waves

3.2.1 Governing equation

When linearised, the acoustic wave equation takes the form

∂p

∂t
+K

∂u

∂x
= 0,

∂u

∂t
+

1

ϱ

∂p

∂x
= 0,

where K is the bulk modulus, ϱ the density, u(x, t) and p(x, t) the velocity and pressure. We define
the speed of sound as c =

√
K/ϱ and impedance Z =

√
Kϱ. In tensorial form, the acoustic wave

equation is:
∂q

∂t
+A · ∂q

∂x
, with q =

(
p
u

)
and A =

(
O K
ϱ−1 0

)
.

We define the right and left eigenvector matrices R and L

R =

(
−Z Z
1 1

)
et L =

1

2

(
Z−1 1
Z 1

)
and the eigenvalue matrix Λ

Λ =

(
λ1 0
0 λ2

)
avec λ1 = −c et λ2 = +c.

We diagonalise the matrix A

A = R ·Λ ·L.

By introducing the Riemann variables
r = L · q

we want to solve
∂r

∂t
+Λ · ∂r

∂x
= 0,

subject to the initial conditions

ri =

{
ri,l if x < 0
ri,r if x > 0

In a Riemann problem, the left and right states can be connected using the right eigenvectors:

qr − ql = α1w1 + α2w2 = R ·α,

thus
α = R−1 · (qr − ql) = L · (qr − ql),

which leads to:
α1 =

1

2

(
−pr − pl

Z
+ ur − ul

)
,

α2 =
1

2

(
pr − pl

Z
+ ur − ul

)
,

The jump from ql to q∗ is W 1 = α1r1 while the jump from q∗ to qr is W 2 = α2r2.



96 Chapitre 3 Linear advection

Figure 3.4 Solution to the Riemann problem.

3.2.2 Implementation

In classic Clawpack, the algorithm for the solver is quite simple.

1 ! =====================================================
2 subroutine rp1(maxm,meqn,mwaves,maux,mbc,mx,ql,qr,auxl,auxr,wave,s,amdq,

apdq)
3 ! =====================================================
4
5 implicit double precision (a-h,o-z)
6
7 dimension wave(meqn, mwaves, 1-mbc:maxm+mbc)
8 dimension s(mwaves,1-mbc:maxm+mbc)
9 dimension ql(meqn, 1-mbc:maxm+mbc)

10 dimension qr(meqn, 1-mbc:maxm+mbc)
11 dimension apdq(meqn, 1-mbc:maxm+mbc)
12 dimension amdq(meqn, 1-mbc:maxm+mbc)
13
14 ! local arrays
15 ! ------------
16 dimension delta(2)
17
18 ! # density, bulk modulus, and sound speed, and impedance of medium:
19 ! # (should be set in setprob.f)
20 common /cparam/ rho,bulk,cc,zz
21
22 ! # find a1 and a2, the coefficients of the 2 eigenvectors:
23 do 20 i = 2-mbc, mx+mbc
24 delta(1) = ql(1,i) - qr(1,i-1)
25 delta(2) = ql(2,i) - qr(2,i-1)
26 a1 = (-delta(1) + zz*delta(2)) / (2.d0*zz)
27 a2 = (delta(1) + zz*delta(2)) / (2.d0*zz)
28
29 ! # Compute the waves.
30
31 wave(1,1,i) = -a1*zz
32 wave(2,1,i) = a1
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33 s(1,i) = -cc
34
35 wave(1,2,i) = a2*zz
36 wave(2,2,i) = a2
37 s(2,i) = cc
38
39 20 END DO
40
41
42 ! # compute the leftgoing and rightgoing flux differences:
43 ! # Note s(1,i) < 0 and s(2,i) > 0.
44
45 do 220 m=1,meqn
46 do 220 i = 2-mbc, mx+mbc
47 amdq(m,i) = s(1,i)*wave(m,1,i)
48 apdq(m,i) = s(2,i)*wave(m,2,i)
49 220 END DO
50
51 return
52 end subroutine rp1

3.2.3 Implementation in Pyclaw

Here we give an example of Pyclaw script. We start with the initialisation of the controller.
1 claw = pyclaw.Controller() # Creation of the controller
2 claw.tfinal = 1.0 # Final time
3 claw.keep_copy = True # Keep solution data in memory for plotting
4 claw.output_format = None # Don't write solution data to file
5 claw.num_output_times = 50 # Write 50 output frames
6
7 # Riemann solver
8 # Here we use the one provided in Clawpack
9 # We could have also used SharpClawSolver1D

10 riemann_solver = riemann.acoustics_1D
11 claw.solver = pyclaw.ClawSolver1D(riemann_solver)

For the boundary conditions, we can specify all boundaries at once by selecting periodic (periodic),
wall (wall), user-defined (custom), or extrapolation (extrap):

12 # Boundary conditions
13 claw.solver.all_bcs = pyclaw.BC.periodic

We can also define the boundary conditions separately
14 claw.solver.bc.lower[0] = pyclaw.BC.wall
15 claw.solver.bc.upper[0] = pyclaw.BC.wall

We will solve the governing equation over the unit line [0, 1] using 100 grid cells. The arguments of
the Domain object are tuples:

16 domain = pyclaw.Domain( (0.,), (1.,), (100,))

Next we create a solution object whose dimension is given by claw.solver.num_eqn (set automat-
ically when selecting the solver) and which belongs to the controller and extends over the domain
specified above:

17 claw.solution = pyclaw.Solution(claw.solver.num_eqn,domain)
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The initial data is specified in the array q: the pressure is contained in q[0,:] and the velocity in
q[1,:]. We impose a wavepacket to the initial pressure and zero velocity.

18 x=domain.grid.x.centers
19 beta=100; gamma=5; x0=0.75
20 claw.solution.q[0,:] = np.exp(-beta * (x-x0)**2) * np.cos(gamma * (x - x0))
21 claw.solution.q[1,:] = 0.

The Riemann solver requires some physical parameters to be specified:
22 import numpy as np
23
24 density = 1.0
25 bulk_modulus = 1.0
26 impedance = np.sqrt(density*bulk_modulus)
27 sound_speed = np.sqrt(density/bulk_modulus)
28
29 claw.solution.state.problem_data = {
30 'rho' : density,
31 'bulk': bulk_modulus,
32 'zz' : np.sqrt(density*bulk_modulus),
33 'cc' : np.sqrt(bulk_modulus/density)
34 }

We can now run Pyclaw:
1 claw.solver.dt_initial = 1.e-99
2 status = claw.run()

The results are contained in claw.frames[:]. We can plot a single frame using matplotlib:
1 pressure = claw.frames[50].q[0,:]
2 plt.rcParams['text.usetex'] = True
3 #plt.plot(x,pressure,'-')
4 fig, ax = plt.subplots(figsize=(6, 4), tight_layout=True)
5 ax.plot(x, pressure)
6
7 ax.set_xlabel(r'$x$ (m)', fontsize=16)
8 ax.set_ylabel(r'$p$ (Pa)', fontsize=16)
9 plt.savefig('solution50.pdf')
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We can also see animations importing ianimate from the visclaw library (Clawpack visualisa-
tion tools):
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35 from clawpack.visclaw import ianimate
36 ianimate.ianimate(claw)

37 from matplotlib import animation
38 import matplotlib.pyplot as plt
39 from IPython.display import HTML
40 import numpy as np
41
42 fig = plt.figure(figsize=(10,6))
43 ax = plt.axes(xlim=(0, 1), ylim=(-0.8, 1.2))
44
45 frame = claw.frames[0]
46 pressure = frame.q[0,:]
47 line1, = ax.plot([], [], lw=2)
48 line2, = ax.plot([], [], lw=2)
49 plt.legend([r'$p$',r'$u$'])
50
51 def fplot(frame_number):
52 frame = claw.frames[frame_number]
53 pressure = frame.q[0,:]
54 velocity = frame.q[1,:]
55 line1.set_data(x,pressure)
56 line2.set_data(x,velocity)
57 return line1,
58
59 anim = animation.FuncAnimation(fig, fplot, frames=len(claw.frames),

interval=30, repeat=False)
60 plt.close()
61 HTML(anim.to_jshtml())
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Here is how Pyclaw has encoded the solver of the Riemann problem.
1 def acoustics_1D(q_l,q_r,aux_l,aux_r,problem_data):
2 r"""
3 Basic 1d acoustics riemann solver, with interleaved arrays
4
5 *problem_data* is expected to contain -
6 - *zz* - (float) Impedance
7 - *cc* - (float) Speed of sound
8
9 See :ref:`pyclaw_rp` for more details.

10
11 :Version: 1.0 (2009-02-03)
12 """
13 import numpy as np
14
15 # Convenience
16 num_rp = np.size(q_l,1)
17 num_eqn = 2
18 num_waves = 2
19
20 # Return values
21 wave = np.empty( (num_eqn, num_waves, num_rp) )
22 s = np.empty( (num_waves, num_rp) )
23 amdq = np.empty( (num_eqn, num_rp) )
24 apdq = np.empty( (num_eqn, num_rp) )
25
26 # Local values
27 delta = np.empty(np.shape(q_l))
28
29 delta = q_r - q_l
30 a1 = (-delta[0,:] + problem_data['zz']*delta[1,:]) / (2.0 *

problem_data['zz'])
31 a2 = (delta[0,:] + problem_data['zz']*delta[1,:]) / (2.0 * problem_data

['zz'])
32
33 # Compute the waves
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34 # 1-Wave
35 wave[0,0,:] = -a1 * problem_data['zz']
36 wave[1,0,:] = a1
37 s[0,:] = -problem_data['cc']
38
39 # 2-Wave
40 wave[0,1,:] = a2 * problem_data['zz']
41 wave[1,1,:] = a2
42 s[1,:] = problem_data['cc']
43
44 # Compute the left going and right going fluctuations
45 for m in range(num_eqn):
46 amdq[m,:] = s[0,:] * wave[m,0,:]
47 apdq[m,:] = s[1,:] * wave[m,1,:]
48
49 return wave, s, amdq, apdq

Here is another example of notebook setting up a solver for the acoustic wave equations, where a
user-defined solver is employed.

1 %matplotlib inline
2
3 from numpy import sqrt, exp, cos
4 from clawpack import riemann
5 from clawpack import pyclaw
6 def acoustics(q_l,q_r,aux_l,aux_r,problem_data):
7 r"""
8 Basic 1d acoustics riemann solver, with interleaved arrays
9

10 *problem_data* is expected to contain -
11 - *zz* - (float) Impedance
12 - *cc* - (float) Speed of sound
13
14 See :ref:`pyclaw_rp` for more details.
15
16 :Version: 1.0 (2009-02-03)
17 """
18 import numpy as np
19 num_eqn = 2
20 num_waves = 2
21
22 # Convenience
23 num_rp = np.size(q_l,1)
24
25 # Return values
26 wave = np.empty( (num_eqn, num_waves, num_rp) )
27 s = np.empty( (num_waves, num_rp) )
28 amdq = np.empty( (num_eqn, num_rp) )
29 apdq = np.empty( (num_eqn, num_rp) )
30
31 # Local values
32 delta = np.empty(np.shape(q_l))
33
34 delta = q_r - q_l
35 a1 = (-delta[0,:] + problem_data['zz']*delta[1,:]) / (2.0 *

problem_data['zz'])
36 a2 = (delta[0,:] + problem_data['zz']*delta[1,:]) / (2.0 * problem_data

['zz'])
37
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38 # Compute the waves
39 # 1-Wave
40 wave[0,0,:] = -a1 * problem_data['zz']
41 wave[1,0,:] = a1
42 s[0,:] = -problem_data['cc']
43
44 # 2-Wave
45 wave[0,1,:] = a2 * problem_data['zz']
46 wave[1,1,:] = a2
47 s[1,:] = problem_data['cc']
48
49 # Compute the left going and right going fluctuations
50 for m in range(num_eqn):
51 amdq[m,:] = s[0,:] * wave[m,0,:]
52 apdq[m,:] = s[1,:] * wave[m,1,:]
53
54 return wave, s, amdq, apdq
55
56 def setup(outdir='./_output', output_style=1):
57
58 riemann_solver = acoustics
59 solver = pyclaw.ClawSolver1D(riemann_solver)
60 solver.limiters = pyclaw.limiters.tvd.MC
61 solver.kernel_language = 'Python'
62 solver.num_waves = 2
63 solver.num_eqn = 2
64 x = pyclaw.Dimension(0.0, 1.0, 100, name='x')
65 domain = pyclaw.Domain(x)
66 num_eqn = 2
67 state = pyclaw.State(domain, num_eqn)
68
69 solver.bc_lower[0] = pyclaw.BC.periodic
70 solver.bc_upper[0] = pyclaw.BC.periodic
71
72 rho = 1.0 # Material density
73 bulk = 1.0 # Material bulk modulus
74
75 state.problem_data['rho'] = rho
76 state.problem_data['bulk'] = bulk
77 state.problem_data['zz'] = sqrt(rho*bulk) # Impedance
78 state.problem_data['cc'] = sqrt(bulk/rho) # Sound speed
79
80 xc = domain.grid.x.centers
81 beta = 100
82 gamma = 0
83 x0 = 0.75
84 state.q[0, :] = exp(-beta * (xc-x0)**2) * cos(gamma * (xc - x0))
85 state.q[1, :] = 0.0
86
87 solver.dt_initial = domain.grid.delta[0] / state.problem_data['cc'] *

0.1
88
89 claw = pyclaw.Controller()
90 claw.solution = pyclaw.Solution(state, domain)
91 claw.solver = solver
92 claw.outdir = outdir
93 claw.output_style = output_style
94 output_style = 1
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95 claw.tfinal = 1.0
96 claw.num_output_times = 10
97 claw.keep_copy = True
98
99 return claw

To run the script and plot one result here (frame 10), the following can be done:
1 claw = setup()
2 claw.run()
3
4 from clawpack.visclaw import data
5 from clawpack.visclaw import frametools
6 plotdata = data.ClawPlotData()
7 plotdata.setplot = setplot
8 claw.plotdata = frametools.call_setplot(setplot,plotdata)
9

10 frame = claw.load_frame(10)
11 f=claw.plot_frame(frame)

We can also plot a frame directly:
1 %matplotlib inline
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 frame = claw.frames[5]
6 w = frame.q[0,:]
7 x = frame.state.grid.c_centers
8 x = x[0]
9

10 plt.plot(x, w)
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We can also plot an animation:
1 nsimul=np.size(claw.frames)
2 figs = []
3 for i in range(nsimul):
4 fig = plt.figure(figsize=(5,3))
5 frame = claw.frames[i]
6 w = frame.q[0,:]
7 x = frame.state.grid.c_centers
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8 x = x[0]
9 plt.plot(x, w)

10 figs.append(fig)
11 plt.close(fig)
12 #plt.plot(x, w)
13 from clawpack.visclaw import animation_tools
14 animation_tools.interact_animate_figs(figs)
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3.3 Spatially-varying advection equation

3.3.1 Theory

Let us consider the variable-coefficient linear advection equation:

∂

∂t
q +A(x) · ∂

∂x
q = 0, (3.6)

where A(x) is a non-constant diagonisable matrix with real and distinct eigenvalues at any position
x of a given domain. In this form, Eq. (3.6) is not in conservative form. Of course, we could make it
consistent with the conservative form:

∂

∂t
A+

∂

∂x
(A · q) = (A′ · q), (3.7)

but when doing so, we transform a homogeneous equation into a non-homogeneous equation, and from
the numerical standpoint, handling the resulting source term may be problematic. It can be shown that
the overall approach implemented in Clawpack can be applied to equations like Eq. (3.6) (see Chap. 9.12
LeVeque, 2002):

Qn+1
i = Qn

i − ∆t

∆x

(
A−∆Qn

i+1/2 +A+∆Qn
i−1/2

)
− ∆t

∆x

(
F̂

n
i+1/2 − F̂

n
i−1/2

)
, (3.8)

where the operators A± are defined by Eqs. (2.46) and (2.46), and the flux correction F̂
n
i+1/2 is:

F̂
n
i+1/2 =

1

2

Mw∑
k=1

|ski−1/2|
(
1− ∆t

∆x
|ski−1/2|

)
W̃

k
i−1/2 (3.9)

The limiters W̃ k
i−1/2 require more work (see Chap. 9.13 LeVeque, 2002).

The Clawpack approach can be extended to spatially-varying advection equations in a simple way.
Let us consider the one-dimensional advection equation

∂

∂t
q + u(x)

∂

∂x
q = 0, (3.10)

where u(x) is a function of x and the initial condition is

q(x, 0) = q0(x). (3.11)

Contrary to the linear case, we cannot express the cell average Qn+1
i as a function of the flux

difference Fi+1/2 − Fi−1/2 since Eq. (3.10) is not in a conservative form, but we can still express the
change in Qn+1

i from the wave
Wi−1/2 = Qi −Qi−1

and speed

si−1/2 =

{
ui if ui > 0,
ui−1 if ui < 0.

. Note that in this discretisation, the velocity u is evaluated at the cell center, but we could have defined
at the cell interface (which would make more sense in multidimensional problems). We define the
fluctuations

A+∆Qi−1/2 = s+i−1/2Wi−1/2,

A−∆Qi−1/2 = s−i−1/2Wi−1/2.
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3.3.2 Implementation in Pyclaw

The solver is a simple adaptation of the solver for linear advection.
1 def SpatialAdvection(q_l,q_r,aux_l,aux_r,problem_data):
2 r"""Basic 1d advection riemann solver
3 *aux(i)* should contain -
4 - *u(x_i)* - (float) advection speed
5 """
6 num_eqn = 1
7 num_waves = 1
8 # Number of Riemann problems we are solving
9 num_rp = q_l.shape[1]

10
11 # Return values
12 wave = np.empty( (num_eqn,num_waves,num_rp) )
13 s = np.empty( (num_waves,num_rp) )
14 amdq = np.zeros( (num_eqn,num_rp) )
15 apdq = np.zeros( (num_eqn,num_rp) )
16
17 wave[0,0,:] = q_r[0,:] - q_l[0,:]
18
19 s[0,:] = aux_l[0,:]
20
21 apdq[0,:] = (aux_l[0,:]>0)*s[0,:] * wave[0,0,:]
22 amdq[0,:] = (aux_l[0,:]<0)*s[0,:] * wave[0,0,:]
23
24 return wave, s, amdq, apdq

3.3.3 Application

Let us consider the case a = 2
√
x. In this case, Eq. (3.10) can be cast in the characteristic form

dq
dt = 0 along dx

dt = 2
√
x.

This shows that the characteristics are curves

dx
dt = 2

√
x ⇒ dx

2
√
x
= dt ⇒

√
x−

√
x0 = t.

The characteristic form implies that

q(x, t) = q0(x0) = q0
(
(
√
x− t)2

)
.

As initial condition, we take the same condition as in § 3.1.3. We need define the auxiliary variable aux
in the auxinit function to define the advection velocity.

1 %matplotlib inline
2
3 import numpy as np
4 from clawpack import riemann
5 from clawpack import pyclaw
6 import matplotlib.pyplot as plt
7
8 def qtrue(x,t):
9 """
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10 The true solution, for comparison.
11 """
12 from numpy import mod, exp, where, logical_and
13 beta = 100
14 gamma = 0
15 x0 = 0.75
16
17 xm = (np.sqrt(x)-t)**2
18 q = exp(-beta * (xm-x0)**2) + where(logical_and(xm > 0.1, xm < 0.4),

1, 0)
19 return q
20
21 # Advection speed
22 def auxinit(state):
23 # Initialize aux
24 xc = state.grid.x.centers
25 state.aux[0,:] = 2*np.sqrt(xc)
26
27
28 def setup(outdir='./_output'):
29 from clawpack import riemann
30
31 solver = pyclaw.ClawSolver1D(SpatialAdvection)
32 solver.num_waves = 1
33 solver.num_eqn = 1
34 solver.kernel_language = 'Python'
35 solver.limiters = pyclaw.limiters.tvd.MC
36 solver.bc_lower[0] = pyclaw.BC.extrap
37 solver.bc_upper[0] = pyclaw.BC.extrap
38 solver.aux_bc_lower[0] = pyclaw.BC.extrap
39 solver.aux_bc_upper[0] = pyclaw.BC.extrap
40
41 xlower=0.0; xupper=2.0; mx=200
42 x = pyclaw.Dimension(xlower,xupper,mx,name='x')
43 domain = pyclaw.Domain(x)
44 num_aux, num_eqn = 1, 1
45 state = pyclaw.State(domain,num_eqn,num_aux)
46
47 xc = domain.grid.x.centers
48 state.q[0,:] = qtrue(xc,0)
49 auxinit(state)
50
51 claw = pyclaw.Controller()
52 claw.outdir = outdir
53 claw.solution = pyclaw.Solution(state,domain)
54 claw.solver = solver
55
56 claw.tfinal = .3
57 claw.num_output_times = 10
58 claw.keep_copy = True
59
60 return claw

We run the code and plit the solution for t = 0.3 s.
1 claw = setup()
2 claw.run()
3 plt.rcParams['text.usetex'] = True
4 index = 10
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5 frame = claw.frames[index]
6 dt = claw.tfinal/claw.num_output_times
7 t = dt*index
8 x = frame.state.grid.c_centers
9 x = x[0]

10
11 true = qtrue(x,t)
12 fig, ax = plt.subplots(figsize=(5, 2.7))
13 w = frame.q[0,:]
14
15 ax.plot(x, w, label='Clawpack sol.')
16 ax.plot(x, true, ':',label='exact solution')
17 ax.legend(loc='right')
18 ax.set_xlabel(r'$x$')
19 ax.set_ylabel(r'$q$')
20 plt.savefig("SpatiallyVaryingAdvection.pdf",bbox_inches='tight')
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3.4 Conservative spatially-varying advection equation

3.4.1 Theory

Let us consider the one-dimensional advection equation, which has a conservative form but also ex-
hibits a space-dependent flux function

∂

∂t
q +

∂

∂x
(u(x)q) = 0, (3.12)

where u(x) > 0 is a function of x and the initial condition is

q(x, 0) = q0(x). (3.13)

Figure 3.5 Notation for the Riemann problem in Clawpack.

When discretising the equation and solving the associated Riemann problem, there are in fact two
Riemann subproblems (see Fig. 3.5):{

∂tq + ui−1∂xq = 0 subject to q(x, tn) = Qn
i−1 if x < xi−1/2,

∂tq + ui∂xq = 0 subject to q(x, tn) = Qn
i if x > xi−1/2.

(3.14)

These Riemann subproblems are the following:

• At the interface xi−1/2, there is a jump from ui−1 to ui. As this jump occurs at the interface
xi−1/2, its velocity is zero. This jump is associated with a change in q since the flux f(x, q) =
u(x)q remains constant. We assume that q jumps from Qn

i−1 to an intermediate state Q∗.
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• In the cell Ci, the second Riemann involves the left state Q∗ and the right state Qn
i . The shock

moves with the velocity s = ui.

The intermediate state is computed by considering the flux conservation

ui−1Q
n
i−1 = uiQ∗ ⇒ Q∗ =

ui−1Q
n
i−1

ui
.

The first discontinuity has the strength

W 1
i−1/2 = Q∗ −Qi−1

and is stationary (s1i−1/2 = 0). The second wave has the strength and velocity

W 2
i−1/2 = Qn

i −Q∗ and s2i−1/2 = ui

We define the fluctuations

A+∆Qi−1/2 =
∑
k=1,2

ski−1/2W
k
i−1/2 = ui

(
Qn

i −
ui−1Q

n
i−1

ui

)
= uiQ

n
i − ui−1Q

n
i−1,

A−∆Qi−1/2 = 0.

Similarly, when u(x) < 0, we have

Q∗ =
uiQ

n
i

ui−1
,

W 2
i−1/2 = Q∗ −Qn

i−1,

s2i−1/2 = ui−1,

A+∆Qi−1/2 = 0,

A−∆Qi−1/2 =
∑
k=1,2

ski−1/2W
k
i−1/2 = ui−1

(
uiQ

n
i

ui−1
−Qn

i−1

)
= uiQ

n
i − ui−1Q

n
i−1.

The general case is thus

Q∗ =


ui−1Q

n
i−1

ui
if ui > 0,

uiQ
n
i

ui−1
if ui < 0

,

W 2
i−1/2 =

{
Qn

i −Q∗ if ui > 0,
Q∗ −Qn

i−1 if ui < 0
,

s2i−1/2 =

{
ui if ui > 0,
ui−1 if ui < 0

,

A+∆Qi−1/2 = s−i−1/2W
2
i−1/2 = uiQ

n
i − ui−1Q

n
i−1,

A−∆Qi−1/2 = s+i−1/2W
2
i−1/2 = uiQ

n
i − ui−1Q

n
i−1.

Although the overall problem involves two waves, only one affects the evolution of Qn+1
i since the

other wave has a zero velocity, and thus its contribution to A±∆Qi−1/2 is zero.
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3.4.2 Implementation in Clawpack

The Clawpack solver encodes the general case.

1 ! =========================================================
2 subroutine rp1(maxmx,meqn,mwaves,maux,mbc,mx,ql,qr,auxl,auxr,wave,s,amdq,

apdq)
3 ! =========================================================
4
5 implicit double precision (a-h,o-z)
6 dimension ql(meqn,1-mbc:maxmx+mbc)
7 dimension qr(meqn,1-mbc:maxmx+mbc)
8 dimension qs(meqn,1-mbc:maxmx+mbc)
9 dimension auxl(maux,1-mbc:maxmx+mbc)

10 dimension auxr(maux,1-mbc:maxmx+mbc)
11 dimension s(mwaves,1-mbc:maxmx+mbc)
12 dimension wave(meqn, mwaves,1-mbc:maxmx+mbc)
13 dimension amdq(meqn,1-mbc:maxmx+mbc)
14 dimension apdq(meqn,1-mbc:maxmx+mbc)
15 common /comrp/ u, p
16
17 do 30 i=1-mbc,mx+mbc
18
19 u = auxl(1,i)
20 p = auxr(1,i-1)
21
22 if (u > 0.d0) then
23 qs(1,i) = qr(1,i-1) * p / u
24 wave(1,1,i) = ql(1,i) - qs(1,i)
25 s(1,i) = u
26 amdq(1,i) = 0.d0
27 apdq(1,i) = u * wave(1,1,i)
28 endif
29 if (u < 0.d0) then
30 qs(1,i) = qr(1,i) * u / p
31 wave(1,1,i) = qs(1,i) - ql(1,i-1)
32 s(1,i) = p
33 amdq(1,i) = p * wave(1,1,i)
34 apdq(1,i) = 0.d0
35 endif
36 if (u == 0.d0) then
37 wave(1,1,i) = 0.d0
38 s(1,i) = 0.d0
39 amdq(1,i) = 0.d0
40 apdq(1,i) = 0.d0
41 endif
42
43 30 end do
44
45 return
46 end subroutine rp1

3.4.3 Implementation in Pyclaw

Here is the Pyclaw version of the solver. In the function setup(), we give the choice between the
Pyclaw and Fortran versions of the solver. The function u is defined by the function. auxinit(state)
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1 def SpatialAdvection(q_l,q_r,aux_l,aux_r,problem_data):
2 r"""Basic 1d advection riemann solver
3 *aux(i)* should contain -
4 - *u(x_i)* - (float) advection speed
5 """
6 num_eqn = 1
7 num_waves = 1
8 # Number of Riemann problems we are solving
9 num_rp = q_l.shape[1]

10
11 # Return values
12 wave = np.empty( (num_eqn,num_waves,num_rp) )
13 s = np.empty( (num_waves,num_rp) )
14 amdq = np.zeros( (num_eqn,num_rp) )
15 apdq = np.zeros( (num_eqn,num_rp) )
16 q_sp = np.zeros( (num_eqn,num_rp) )
17 q_sm = np.zeros( (num_eqn,num_rp) )
18 eps = 1.e-12
19
20 q_sp[0,:] = q_l[0,:]*aux_l[0,:]/ (aux_r[0,:]+eps)
21 q_sm[0,:] = q_r[0,:]*aux_r[0,:]/ (aux_l[0,:]+eps)
22 wave[0,0,:] = (aux_l[0,:]<0)*(q_sm[0,:] - q_l[0,:])+(aux_l[0,:]>0)*(q_r

[0,:] - q_sp[0,:])
23
24 s[0,:] = (aux_l[0,:]>0)* aux_r[0,:] +(aux_l[0,:]<0)* aux_l[0,:]
25
26 apdq[0,:] = (aux_l[0,:]>0)*s[0,:] * wave[0,0,:]
27 amdq[0,:] = (aux_l[0,:]<0)*s[0,:] * wave[0,0,:]
28
29 return wave, s, amdq, apdq
30
31 # Advection speed
32 def auxinit(state):
33 xc = state.grid.x.centers
34 state.aux[0,:] = 2*np.sqrt(xc)
35
36 def setup(typeSolver=1,outdir='./_output'):
37 from clawpack import riemann
38
39 if typeSolver == 2:
40 solver = pyclaw.ClawSolver1D(SpatialAdvection)
41 solver.kernel_language = 'Python'
42 elif typeSolver == 1:
43 solver = pyclaw.ClawSolver1D(advectionVariableBis)
44 solver.kernel_language = 'Fortran'
45 solver.num_waves = 1
46 solver.num_eqn = 1
47 solver.limiters = pyclaw.limiters.tvd.superbee
48 solver.order = 2 #1: Godunov, 2: Lax-Wendroff-LeVeque
49
50 solver.limiters = pyclaw.limiters.tvd.MC
51 solver.bc_lower[0] = pyclaw.BC.extrap
52 solver.bc_upper[0] = pyclaw.BC.extrap
53 solver.aux_bc_lower[0] = pyclaw.BC.extrap
54 solver.aux_bc_upper[0] = pyclaw.BC.extrap
55
56 xlower = 0.00; xupper = 2.0; mx = 200
57 x = pyclaw.Dimension(xlower,xupper,mx,name='x')
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58 domain = pyclaw.Domain(x)
59 num_aux, num_eqn = 1, 1
60 state = pyclaw.State(domain,num_eqn,num_aux)
61
62 xc = domain.grid.x.centers
63 state.q[0,:] = qinit(xc)
64 auxinit(state)
65
66 claw = pyclaw.Controller()
67 claw.outdir = outdir
68 claw.solution = pyclaw.Solution(state,domain)
69 claw.solver = solver
70
71 claw.tfinal = 1
72 claw.num_output_times = 20
73 claw.keep_copy = True
74
75 return claw

3.4.4 Application

Let us consider Eq. (3.12) with
u(x) = 2

√
x.

Eq. (3.12) can be recast
∂

∂t
q + u(x)

∂

∂x
(q) = −q(x, t)

d
dx(u),

and in characteristic form:
d
dtq = − q√

x
along dx

dt = 2
√
x.

The characteristic curve’s equation is thus
√
x−

√
x0 = t.

The q time derivative becomes

dq
dt = − q√

x
= − q

t+
√
x0

⇒ dq
q

= − dt
t+

√
x0

.

The solution is obtained by taking the initial condition (3.13)

ln q

q0
= − ln

t+
√
x0√

x0
.

We eventually find

q(x, t) = q0(x0)

√
x0

t+
√
x0

,

= q0
(
(
√
x− t)2

) |√x− t|√
x

.

We encode the exact solution.
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1 def qtrue(x,t):
2 """
3 The true solution, for comparison.
4 """
5 from numpy import mod, exp, where, logical_and
6 beta = 100
7 gamma = 0
8 x0 = 0.75
9 if isinstance(x,(np.ndarray,list)):

10 m = np.size(x)
11 q = np.empty((m))
12 for i in range(m):
13 xm = (np.sqrt(x[i])-t)**2
14 if x[i] != 0.:
15 q[i] = qinit(xm)/np.sqrt(x[i])*np.sqrt(xm)
16 else:
17 q[i] = 0.
18 if isinstance(x,(float,int)):
19 if x != 0:
20 xm = (np.sqrt(x)-t)**2
21 q = qinit(xm)/np.sqrt(x)*np.sqrt(xm)
22 else:
23 q = 0
24 return q
25
26 def qinit(x):
27 """
28 The true solution, for comparison.
29 """
30 from numpy import mod, exp, where, logical_and
31 beta = 100
32 gamma = 0
33 x0 = 0.75
34 q = exp(-beta * (x-x0)**2) + where(logical_and(x > 0.1, x < 0.4), 1,

0)
35 return q

We can use the matplotlib animation toolbox to plot the solution at different times.
1 def advection_animation():
2 import matplotlib.animation
3 import numpy
4 # compute the solution with the method defined above:
5 claw = setup(typeSolver=2)
6 claw.keep_copy = True
7 claw.run()
8 x = claw.frames[0].grid.dimensions[0].centers
9 x_true = numpy.linspace(0.00, 2.0, 200)

10
11 fig = plt.figure()
12 axes = plt.subplot(1, 1, 1)
13 axes.set_xlim((x[0], x[-1]))
14 axes.set_ylim((-0.1, 2))
15 axes.set_title("Advection equation")
16
17 def init():
18 axes.set_xlim((x[0], x[-1]))
19 axes.set_ylim((-0.1,2.1))
20 computed_line, = axes.plot(x[0], claw.frames[0].q[0, :][0], 'ro')
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21 exact_line, = axes.plot(x_true, qtrue(x_true,0.0), 'b--')
22 return (computed_line, exact_line)
23
24 computed_line, exact_line = init()
25
26 def fplot(n):
27 computed_line.set_data([x,], [claw.frames[n].q[0, :]])
28 exact_line.set_data([x_true], [qtrue(x_true,claw.frames[n].t)])
29 return (computed_line, exact_line)
30
31 frames_to_plot = range(0, len(claw.frames))
32 plt.close(fig)
33 return matplotlib.animation.FuncAnimation(fig, fplot, frames=

frames_to_plot, interval=100,
34 blit=True, init_func=None, repeat=False)
35
36 from IPython.display import HTML
37 anim = advection_animation()
38 HTML(anim.to_jshtml())

We can also plot an animation using the Clawpack animation tools.
1 nsimul=np.size(claw.frames)
2 figs = []
3 for i in range(nsimul):
4 fig, ax = plt.subplots(figsize=(5, 3))
5
6 frame = claw.frames[i]
7 w = frame.q[0,:]
8 x = frame.state.grid.c_centers
9 x = x[0]

10 dt = claw.tfinal/claw.num_output_times
11 t = dt*i
12 true = qtrue(x,t)
13 ax.set_xlabel(r'$x$')
14 ax.set_ylabel(r'$q$')
15 plt.plot(x, w)
16 plt.plot(x, true, '--',color = 'r')
17 figs.append(fig)
18 plt.close(fig)
19
20 from clawpack.visclaw import animation_tools
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21 animation_tools.interact_animate_figs(figs)

3.4.5 Alternative

We can also handle Eq. (3.12) as a non-homogeneous advection equation

∂q

∂t
+ u(x)

∂q

∂x
= −q

du
dx.

1 %matplotlib inline
2
3 import numpy as np
4 from clawpack import riemann
5 from clawpack import pyclaw
6
7 def qtrue(x,t):
8 """
9 The true solution, for comparison.

10 """
11 from numpy import mod, exp, where, logical_and
12 beta = 100
13 gamma = 0
14 x0 = 0.75
15 if isinstance(x,(np.ndarray,list)):
16 m = np.size(x)
17 q = np.empty((m))
18 for i in range(m):
19 xm = (np.sqrt(x[i])-t)**2
20 if x[i] != 0.:
21 q[i] = qinit(xm)/np.sqrt(x[i])*np.sqrt(xm)
22 else:
23 q[i] = 0.
24 if isinstance(x,(float,int)):
25 if x != 0:
26 xm = (np.sqrt(x)-t)**2
27 q = qinit(xm)/np.sqrt(x)*np.sqrt(xm)
28 else:
29 q = 0
30 return q
31
32 def qinit(x):
33 """
34 The true solution, for comparison.
35 """
36 from numpy import mod, exp, where, logical_and
37 beta = 100
38 gamma = 0
39 x0 = 0.75
40 q = exp(-beta * (x-x0)**2) + where(logical_and(x > 0.1, x < 0.4), 1,

0)
41 q = where(logical_and(x > 0.1, x < 0.4), 1, 0)
42 return q
43
44
45 def advection(q_l,q_r,aux_l,aux_r,problem_data):
46 r"""
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47 1d linear advection riemann solver
48 """
49 import numpy as np
50 num_eqn = 1
51 num_waves = 1
52
53 # Number of Riemann problems
54 num_rp = q_l.shape[1]
55
56 # Return values
57 wave = np.empty( (num_eqn, num_waves, num_rp) )
58 s = np.empty( (num_waves, num_rp) )
59 amdq = np.empty( (num_eqn, num_rp) )
60 apdq = np.empty( (num_eqn, num_rp) )
61
62 # Local values
63 delta = np.empty(np.shape(q_l))
64 delta = q_r - q_l
65 # Compute the wave
66 # 1-Wave
67 wave[0,0,:] = delta
68 s[0,:] = (aux_l[0,:]+aux_r[0,:])/2.
69 s_index = np.zeros((2,num_rp))
70 s_index[0,:] = s[0,:]
71 amdq[0,:] = np.min(s_index,axis=0) * wave[0,0,:]
72 apdq[0,:] = np.max(s_index,axis=0) * wave[0,0,:]
73
74 return wave, s, amdq, apdq
75
76 def source_term(solver, state, dt):
77 from scipy.linalg import solve_banded
78 import numpy as np
79 qs = state.q[0,:]
80 xc = state.grid.c_centers[0]
81 dq = -qs/np.sqrt(xc) *dt
82 state.q[0,:] = qs+dq
83
84 # Advection speed
85 def auxinit(state):
86 xc = state.grid.x.centers
87 state.aux[0,:] = 2*np.sqrt(xc)
88
89 def setup(outdir='./_output'):
90 from clawpack import riemann
91
92 solver = pyclaw.ClawSolver1D(advection)
93 solver.kernel_language = 'Python'
94 solver.num_waves = 1
95 solver.num_eqn = 1
96
97 solver.limiters = pyclaw.limiters.tvd.MC
98 solver.bc_lower[0] = pyclaw.BC.extrap
99 solver.bc_upper[0] = pyclaw.BC.extrap

100 solver.aux_bc_lower[0] = pyclaw.BC.extrap
101 solver.aux_bc_upper[0] = pyclaw.BC.extrap
102 solver.step_source = source_term
103
104 xlower = 0.0; xupper = 2.0; mx = 200
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105 x = pyclaw.Dimension(xlower,xupper,mx,name='x')
106 domain = pyclaw.Domain(x)
107 num_aux, num_eqn = 1, 1
108 state = pyclaw.State(domain,num_eqn,num_aux)
109
110 xc = domain.grid.x.centers
111 state.q[0,:] = qinit(xc)
112 auxinit(state)
113
114 claw = pyclaw.Controller()
115 claw.outdir = outdir
116 claw.solution = pyclaw.Solution(state,domain)
117 claw.solver = solver
118
119 claw.tfinal = 1
120 claw.num_output_times = 20
121 claw.keep_copy = True
122
123 return claw
124

We run the code and plot the solution at time t = 0.2 s.

1 import matplotlib.pyplot as plt
2 claw = setup()
3 claw.run()
4 plt.rcParams['text.usetex'] = True
5 index = 4
6 frame = claw.frames[index]
7 dt = claw.tfinal/claw.num_output_times
8 t = dt*index
9 x = frame.state.grid.c_centers

10 x = x[0]
11
12 true = qtrue(x,t)
13 fig, ax = plt.subplots(figsize=(5, 2.7))
14 w = frame.q[0,:]
15
16 ax.plot(x, w, label='Clawpack sol.')
17 ax.plot(x, true, ':',label='exact solution')
18 ax.legend(loc='right')
19 ax.set_xlabel(r'$x$')
20 ax.set_ylabel(r'$q$')
21 plt.savefig("SpatiallyVaryingAdvectionWithSource.pdf",bbox_inches='tight')
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CHAPTER4
Burgers’ equations

4.1 Theory

Let us consider Burgers’ equation, which is a nonlinear advection equation:

∂u

∂t
+ u

∂u

∂x
= 0, (4.1)

or in conservative form
∂u

∂t
+

∂f(u)

∂x
= 0 where f(u) = u2

2
.

The solution to the Riemann problem has two types of solution:

• Rarefaction wave: u = U(ξ) with ξ = x/t. Substituting this form into Eq. (4.1) gives

dU
∂ξ

(
−ξ +

df
du (U)

)
= 0 where f ′(U) = U

whose solution is
U(ξ) = ξ.

• Shock wave: The Rankine-Hugoniot equation tells us that the shock moves at speed:

σ̇ =
Jf(u)KJuK =

u+ + u−

2
,

where u+ and u− are the u value on the shock wave’s right and left sides.

The solution to the Riemann problem

u(x, 0) =

{
ul if x < 0,
ur if x > 0.

(4.2)

depends on the sign of ur − ul, where ur and ul are the right and left initial states:

• If ur > ul, we have a rarefaction wave separating the two initial states. The characteristic curves
separating U(ξ) from ul and ur are, respectively, x = ult and x = urt.

• If ur < ul, we have a shock wave moving at the speed:

σ̇ =
1

2
(ur + ul).

121
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4.2 Approximate solvers

We have seen in § 2.4.1 Clawpack, the Riemann solver can expressed in terms of fluctuations:

Qn+1
i = Qn

i − ∆t

∆x
(A+∆Qi−1/2 +A−∆Qi+1/2),

where the fluctuations are

A+∆Qi−1/2 = f(Qi)− f(Q↓
i−1/2),

A−∆Qi+1/2 = f(Q↓
i+1/2)− f(Qi),

where Qi±1/2 represents the value advected along the characteristic coming from the xi±1/2 interface
and Q↓

i+1/2 = q↓(Qi, Qi−1 is the q value along the ray x = xi−1/2.

There are five possible wave configurations (see Fig. 2.6): left- and right-going shock waves, left-
and right-going rarefaction waves, and transonic rarefaction wave. When the solution to the Riemann
problem is not a transonic wave, the idea is to approximate this solution as a shock wave even though
it is a rarefaction wave. The shock W propagates at a speed s:

Wi−1/2 = Qi −Qi−1,

si−1/2 =
f(Qi)− f(Qi−1)

Qi −Qi−1
,

for Qi ̸= Qi−1. We then deduce

A+∆Qi−1/2 = si−1/2Wi−1/2,

A−∆Qi−1/2 = si−1/2Wi−1/2,

When the solution to the Riemann problem is a transonic wave, we use the definition of the fluctuations

A+∆Qi−1/2 = f(Qi)− f(qs),

A−∆Qi−1/2 = f(qs)− f(Qi−1),

where qs is the value such as f ′(qs) = 0 (vertical characteristic corresponding to x − xi−1/2 = 0 · t).
For the Burgers equation we have qs = 0.

To summarize, we express the functions amdp, apdp, s, and W in Clawpack:

A+∆Ui−1/2 = si−1/2Wi−1/2, (4.3)
A−∆Ui−1/2 = si−1/2Wi−1/2, (4.4)

with

Wi−1/2 = Ui − Ui−1, (4.5)

si−1/2 =
1

2
(Ui + Ui−1), (4.6)

but if Ui−1 < 0 and Ui > 0 then

A+∆Ui−1/2 =
1

2
U2
i , (4.7)

A−∆Ui−1/2 = −1

2
U2
i−1, (4.8)
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In Clawpack, the treatment of the transonic wave is called an entropy fix, and its use in the Riemann
solver is indicated through the Boolean variable efix. Note that in the present case, the Roe and
HLL solvers provide the same approximate solution as above. Indeed, linearising the Burgers equation
(4.1) yields:

∂q

∂t
+ q̂

∂q

∂x
= 0, (4.9)

where the advection velocity q̂ is given by

q̂ =
1

2
(qr + ql)

so that the linearised Burgers solution provides the exact solution when the initial states ur and ul
lie on the Hugoniot locus. For the HLL solver, we need to determine two waves, but the solution to
one-dimensional equations such as the Burgers equation involves a single wave. We thus assume that
one of the waves vanishes, while the other moves at speed s given by

f(qr)− f(ql) = s(qr − ql) ⇒ s =
1

2
(qr + ql).

For the same reason, the f-wave solver will provide the same result.

4.2.1 Implementation in Clawpack

The Riemann solver is just the transcript of Eqs. (4.3) to (4.8).
1 c
2 c
3 efix = .true. !# Compute correct flux for transonic rarefactions
4 c
5 do 30 i=2-mbc,mx+mbc
6 c
7 c # Compute the wave and speed
8 c
9 wave(i,1,1) = ql(i,1) - qr(i-1,1)

10 s(i,1) = 0.5d0 * (qr(i-1,1) + ql(i,1))
11 c
12 c
13 c # compute left-going and right-going flux differences:
14 c ------------------------------------------------------
15 c
16 amdq(i,1) = dmin1(s(i,1), 0.d0) * wave(i,1,1)
17 apdq(i,1) = dmax1(s(i,1), 0.d0) * wave(i,1,1)
18 c
19 if (efix) then
20 c # entropy fix for transonic rarefactions:
21 if (qr(i-1,1).lt.0.d0 .and. ql(i,1).gt.0.d0) then
22 amdq(i,1) = - 0.5d0 * qr(i-1,1)**2
23 apdq(i,1) = 0.5d0 * ql(i,1)**2
24 endif
25 endif
26 30 continue

4.2.2 Implementation in Pyclaw

The Riemann solver is just the transcript of Eqs. (4.3) to (4.8).
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1 def burgers_1D(q_l,q_r,aux_l,aux_r,problem_data):
2 r"""
3 Riemann solver for Burgers equation in 1d
4 *problem_data* should contain -
5 - *efix* - (bool) Whether a entropy fix should be used, if not present

,
6 false is assumed
7 """
8
9 num_rp = q_l.shape[1]

10 # Output arrays
11 wave = np.empty( (num_eqn, num_waves, num_rp) )
12 s = np.empty( (num_waves, num_rp) )
13 amdq = np.empty( (num_eqn, num_rp) )
14 apdq = np.empty( (num_eqn, num_rp) )
15
16 # Basic solve
17 wave[0,:,:] = q_r - q_l
18 s[0,:] = 0.5 * (q_r[0,:] + q_l[0,:])
19
20 s_index = np.zeros((2,num_rp))
21 s_index[0,:] = s[0,:]
22 amdq[0,:] = np.min(s_index,axis=0) * wave[0,0,:]
23 apdq[0,:] = np.max(s_index,axis=0) * wave[0,0,:]
24
25 # Compute entropy fix
26 if problem_data['efix']:
27 transonic = (q_l[0,:] < 0.0) * (q_r[0,:] > 0.0)
28 amdq[0,transonic] = -0.5 * q_l[0,transonic]**2
29 apdq[0,transonic] = 0.5 * q_r[0,transonic]**2
30
31 return wave, s, amdq, apdq

In this routine, ql is the left initial condition. It is a m×N array (m = 1 the problem dimension,
andN the number of cells). So, num_rp␣=␣q_l.shape[1] givesN . First, the amdp, apdp, s, and W
are initialised, then s and W are defined. Finally, the fluctuations are defined using the numpy function
numpy.min, which provides the minimum value: absolute, for each column (with the axis=0 option),
or for each row (with the axis=1 option). For instance, the lines

32 import numpy as np
33 x=np.array([[1,4],[2,5],[3,-2]])
34 np.min(x,axis=None)
35 np.min(x,axis=0)
36 np.min(x,axis=1)

provide the values: -2, array([␣1,␣-2]) and array([␣1,␣2,␣-2]), respectively.

4.3 Examples

4.3.1 Solution to the Riemann problem

Here we solve the Riemann problem and compare the numerical and exact solutions (the exact solution
is outlined in § 4.1). The code is initialised as follows:

1 %matplotlib inline
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2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 from numpy import sqrt, log
6 from clawpack import riemann
7 from clawpack import pyclaw
8
9 def qsol(x,t,ql,qr):

10 """
11 The initial and true solution.
12 """
13 import numpy as np
14 dim = x.shape[0]
15 q = np.empty(dim)
16
17 if qr < ql:
18 s = (qr+ql)/2
19 for i in range(dim):
20 if x[i]>=s*t:
21 q[i] = qr
22 else:
23 q[i] = ql
24 else:
25 if t > 0:
26 xr = qr*t
27 xl = ql*t
28 for i in range(dim):
29 if x[i]>=xl and x[i]<=xr:
30 q[i] = x[i]/t
31 elif x[i]>xr:
32 q[i] = qr
33 elif x[i]<xl:
34 q[i] = ql
35 else:
36 for i in range(dim):
37 if x[i]>=0:
38 q[i] = qr
39 else:
40 q[i] = ql
41 return q
42
43 def setup(ql,qr):
44
45 solver = pyclaw.ClawSolver1D()
46 solver.rp = riemann.burgers_1D_py.burgers_1D
47 solver.num_waves = 1
48 solver.num_eqn = 1
49 solver.kernel_language = 'Python'
50 solver.limiters = pyclaw.limiters.tvd.superbee
51 solver.bc_lower[0] = pyclaw.BC.extrap
52 solver.bc_upper[0] = pyclaw.BC.extrap
53 solver.order = 2 #1: Godunov, 2: Lax-Wendroff-LeVeque
54
55 x = pyclaw.Dimension(-1, 1., 200, name='x')
56 domain = pyclaw.Domain(x)
57 num_eqn = 1
58
59 state = pyclaw.State(domain, num_eqn)
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60 state.problem_data['efix'] = True
61
62 xc = domain.grid.x.centers
63
64 state.q[0, :] = qsol(xc,0,ql,qr)
65
66 claw = pyclaw.Controller()
67 claw.solution = pyclaw.Solution(state, domain)
68 claw.solver = solver
69 claw.outdir = './_output'
70 claw.output_style = 1
71 claw.tfinal = 2.0
72 claw.num_output_times = 20
73 claw.keep_copy = True
74 return claw

We run the code for different initial conditions.
1 claw = setup(2,0)
2 claw.run()
3
4 plt.rcParams['text.usetex'] = True
5 index = 3
6 frame = claw.frames[index]
7 dt = claw.tfinal/claw.num_output_times
8 t = dt*index
9 x = frame.state.grid.c_centers

10 x = x[0]
11 true = qsol(x,t,2,0)
12 fig, ax = plt.subplots(figsize=(3,3))
13 w = frame.q[0,:]
14
15 ax.plot(x, w, label='Clawpack sol.')
16 ax.plot(x, true, ':',label='exact solution')
17 ax.legend(loc='lower left')
18 ax.set_xlabel(r'$x$')
19 ax.set_ylabel(r'$q$')
20 plt.text(-1,1.5,'(a)' )
21 plt.savefig("ShockBurgerClaw.pdf",bbox_inches='tight')

Figure 4.1 shows the numerical and solutions at time t = 0.3 s. We considered the case: (a) shock
wave with (ul = 2, ur = 0); (a) rarefaction wave with (ul = 0, ur = 2); (a) transonic wave with
(ul = −1, ur = 1).
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Figure 4.1 Solutions to the Riemann problem: (a) shock wave; rarefaction wave (b) ; (c) transonic
rarefaction wave. Lax–Wendroff–LeVeque solver with ∆x = 10−2 m.
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4.3.2 Solution to an initial value problem

Let us now consider a more complicated initial-value problem:

u(x, 0) = u0(x) =

{
0 if x < 0 or x > b,
ax if 0 ≤ x ≤ b,

where a and b are two constants. Using the method of characteristics, we can cast Eq. (4.1) in the form:

du
dt = 0 along dx

dt = u, (4.10)

which shows that the characteristics are straight lines in the form

x = x0 + ut,

and since u(x, t) is constant along this curve and equal to u(x, 0) = u0(x0), we deduce that u(x, t) is
the solution to

u0(x0) = a(x− ut) = u ⇒ u =
ax

at+ 1
.

The initial condition has a finite support with an initial discontinuity at x = b. Since the right state
is lower than the left state, this initial discontinuity will propagate as a shock wave x = s(t), whose
velocity is given by the Rankine–Hugoniot equation:

ṡ =
Jf(u)KJuK =

1

2

u2(s(t), t)

u(s(t), t)
=

1

2
u(s(t), t),

subject to s(0) = b. The solution is
s(t) = b

√
1 + at.

The exact solution to Eq. (4.1) is thus

u(x, t) =

{
0 if x < 0 or x > s(t),
ax

at+ 1
if 0 ≤ x ≤ s(t)

(4.11)

We initialise the code with a = 1 and b = 1/2.
1 %matplotlib inline
2
3 from numpy import sqrt, log
4 from clawpack import riemann
5 from clawpack import pyclaw
6
7 def xfr(t): return sqrt(1+t)/2
8
9 def qtrue(x,t):

10 """
11 The true solution, for comparison.
12 """
13 import numpy as np
14 dim = x.shape[0]
15 q = np.empty(dim)
16
17 xf = xfr(t)
18 for i in range(dim):
19 if x[i]>=0.0 and x[i]<=xf:
20 q[i] = (x[i]) /(t+1)
21 else:
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22 q[i] = 0
23 return q
24
25 def burgers(q_l,q_r,aux_l,aux_r,problem_data):
26 r"""
27 1d burgers riemann solver
28 """
29 import numpy as np
30 num_eqn = 1
31 num_waves = 1
32
33 # Convenience
34 num_rp = q_l.shape[1]
35
36 # Return values
37 wave = np.empty( (num_eqn, num_waves, num_rp) )
38 s = np.empty( (num_waves, num_rp) )
39 amdq = np.empty( (num_eqn, num_rp) )
40 apdq = np.empty( (num_eqn, num_rp) )
41
42 # Local values
43 delta = np.empty(np.shape(q_l))
44 delta = q_r - q_l
45
46 # Compute the wave
47 # 1-Wave
48 wave[0,0,:] = delta
49 s[0,:] = 0.5 * (q_r[0,:] + q_l[0,:])
50
51 # Compute the left going and right going fluctuations
52 s_index = np.zeros((2,num_rp))
53 s_index[0,:] = s[0,:]
54 amdq[0,:] = np.min(s_index,axis=0) * wave[0,0,:]
55 apdq[0,:] = np.max(s_index,axis=0) * wave[0,0,:]
56
57 # Compute entropy fix
58 if problem_data['efix']:
59 transonic = (q_l[0,:] < 0.0) * (q_r[0,:] > 0.0)
60 amdq[0,transonic] = -0.5 * q_l[0,transonic]**2
61 apdq[0,transonic] = 0.5 * q_r[0,transonic]**2
62
63 return wave, s, amdq, apdq
64
65
66 def setup(outdir='./_output', output_style=1):
67
68 solver = pyclaw.ClawSolver1D()
69 solver.rp = burgers
70
71 solver.num_waves = 1
72 solver.num_eqn = 1
73 solver.kernel_language = 'Python'
74 solver.limiters = pyclaw.limiters.tvd.superbee
75 solver.bc_lower[0] = pyclaw.BC.extrap
76 solver.bc_upper[0] = pyclaw.BC.extrap
77 solver.order = 2 #1: Godunov, 2: Lax-Wendroff-LeVeque
78
79 x = pyclaw.Dimension(-0.10, 1.5, 320, name='x')
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80 domain = pyclaw.Domain(x)
81 xc = domain.grid.x.centers
82 num_eqn = 1
83
84 state = pyclaw.State(domain, num_eqn)
85 state.problem_data['efix'] = True
86 state.q[0, :] = qtrue(xc, 0)
87
88 claw = pyclaw.Controller()
89 claw.solution = pyclaw.Solution(state, domain)
90 claw.solver = solver
91 claw.outdir = outdir
92 claw.output_style = output_style
93 claw.tfinal = 2.0
94 claw.num_output_times = 20
95 claw.keep_copy = True
96
97 return claw

We plot the numerical solution at time t = 1 s.
1 claw = setup()
2 claw.run()
3 %matplotlib inline
4 import numpy as np
5 import matplotlib.pyplot as plt
6 plt.rcParams['text.usetex'] = True
7 index = 10
8 frame = claw.frames[index]
9 dt = claw.tfinal/claw.num_output_times

10 t = dt*index
11 x = frame.state.grid.c_centers
12 x = x[0]
13 true = qtrue(x,t)
14 fig, ax = plt.subplots(figsize=(5, 2.7))
15 w = frame.q[0,:]
16
17 ax.plot(x, w, label='Clawpack sol.')
18 ax.plot(x, true, ':',label='exact solution')
19 ax.legend(loc='right')
20 ax.set_xlabel(r'$x$')
21 ax.set_ylabel(r'$q$')
22 plt.savefig("InitialValueBurgerClaw.pdf")
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We can also determine the front position x = s(t) in the numerical solution and compare it with
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the exact solution. We compute the shock position for a set of discrete times for which the numerical
solution was recorded. A more accurate representation of s(t) could have been obtained by using the
function b4step (see the example of § 4.5).

1 nsimul=np.size(claw.frames)
2 positionFront = []
3 for i in range(nsimul):
4 frame = claw.frames[i]
5 w = frame.q[0,:]
6 xc=frame.state.grid.c_centers[0]
7 nx=xc.size
8 dx=(xc[-1]-xc[0])/nx
9 pos= dx*w[w>1.e-5].size

10 positionFront.append(pos)
11
12 t = np.linspace(0, claw.tfinal, nsimul)
13 xfront = xfr(t)
14
15 fig, ax = plt.subplots()
16 ax.set_xlabel(r'$t$')
17 ax.set_ylabel(r'$s(t)$')
18
19 ax.plot(t, xfront, '--',color = 'r')
20 ax.plot(t, positionFront)
21 plt.savefig("frontBurgerClaw.pdf")
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4.4 Nonlinear advection equation with a diffusive term

4.4.1 Theoretical considerations

Let us consider the Burgers equation with a diffusive term representing viscous effect:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (4.12)

where ν is the dynamic viscosity. This equation is subject to an initial condition:

u(x, 0) = u0(x), (4.13)

and the following boundary conditions:

lim
x→±∞

∂xu(x, t) = 0. (4.14)

General solutions

Exact solutions can be worked out using the Cole–Hopf transformation. To that end, let us first define
the primitive of u(x, t) with respect to x and denoted by U(x, t). We have u = ∂xU . Substituting this
new variable into Eq. (4.12), integrating it and taking the boundary conditions (4.14) leads to

∂U

∂t
+

1

2

(
∂U

∂x

)2

= ν
∂2U

∂x2
, (4.15)

subject to U(x, 0) = U0(x) where U0 is the primitive of U0. We now use the new variable ϕ in the
Cole–Hopf transformation:

U(x, t) = −2ν lnϕ(x, t)
Substituting this form into Eq. (4.15) gives the simple linear diffusion equation

∂ϕ

∂t
= ν

∂2ϕ

∂x2
, (4.16)

subject to

ϕ(x, 0) = exp
(
− 1

2ν
U0(x)

)
.

The general solution of Eq. (4.16) is the convolution of the initial value ϕ(x, 0)with the kernel function
K(x, t)

ϕ(x, t) =

∫ +∞

−∞
K(x− y, t)ϕ(y, 0)dy where K(y, t) =

1√
4πνt

exp
(
− y2

4νt

)
(4.17)

The solution to Eq. (4.15) is thus

U(x, t) = −2ν ln
∫ +∞

−∞

1√
4πνt

exp
(
−(x− y)2

4νt
− 1

2ν
U0(y)

)
dy. (4.18)

By differentiating this equation with to respect to x, we obtain the general solution u(x, t)

u(x, t) =
∂U

∂x
=

∫ +∞
−∞

x− y

t
exp

(
−(x− y)2

4νt
− 1

2ν
U0(y)

)
dy

∫ +∞
−∞ exp

(
−(x− y)2

4νt
− 1

2ν
U0(y)

)
dy

. (4.19)

It is difficult to go further with this equation, but it can be evaluated numerically and provide an ap-
proximation to the exact solution.
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Travelling-wave solutions

It possible to work out exact solutions to the viscous Burgers equation (4.12) by noting that this equation
is invariant to the translation group x → x + sλ and t → t + λ, which indicates that there must be a
travelling-wave solution in the form:

u(x, t) = U(ξ) where ξ = x− st.

Substituting this form into the governing equation (4.12) leads to the principal differential equation

−s
dU
dξ + U

dU
dξ = ν

d2U
dξ2 , (4.20)

which can be integrated to give
−sU +

1

2
U2 = ν

dU
dξ + c, (4.21)

where c is constant of integration. We assume that the governing equation (4.12) is supplemented by
the boundary conditions

lim
x→−∞

u(x, t) = ul and lim
x→+∞

u(x, t) = ur

Using these boundary conditions shows that the constant of integration satisfies the equations

c− sur +
1

2
u2r = c− sul +

1

2
u2l ,

which is possible only if
s =

ul + ur
2

,

and thus
c = −ulur

2
.

We can recast Eq. (4.21)

1

2ν
=

dU
U2 − 2sU − c

,

=
dU

(U − s)2 − b2
where b2 = s2 + c =

(
ul − ur

2

)2

,

whose integral is

arctanhs− u

b
= |b| ξ

2ν
⇒ u = s− |b| tanh

(
b
ξ

2ν

)
+ a,

where a is a constant of integration found to be zero. The travelling-wave solution is therefore:

u =
ul + ur

2
−
∣∣∣∣ul − ur

2

∣∣∣∣ tanh(ul − ur
4ν

(
x− ul + ur

2
t

))
. (4.22)

4.4.2 Numerical implementation in Clawpack

The scripts for solving the Burgers equation (4.12) are the same as those for solving the inviscid case in
§ 4.2.1 except for the source term, where we implement the Crank–Nicolson method (see § 2.9.3):

Qn+1
i = Q∗

i + ν
∆t

2

(
Qn+1

i−1 − 2Qn+1
i +Qn+1

i+1

∆x2
+

Q∗
i−1 − 2Q∗

i +Q∗
i+1

∆x2

)
. (4.23)
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We assume a no-flux condition at the domain boundaries, and thus Qn+1
1 = Qn+1

1 and Qn+1
m = Qn+1

m+1.
Let us define the ratio r

r = ν
∆t

2∆x2
.

We have to solve the linear system


1 + r −r 0 . . . 0

−r
. . . 0

. . . −r 1 + 2r −r . . .
. . .

0 . . . 0 −r 1 + r

 ·



Qn+1
1

Qn+1
2
...

Qn+1
i
...

Qn+1
m


=



(1− r)Qn
1 + rQn

2

Qn
1 + (1− 2r)Qn

2 + rQn
3

...
Qn

i−1 + (1− 2r)Qn
i + rQn

i+1
...

(1− r)Qn
m + rQn

m−1


The file src1.f solves this system. It calls the LAPACK routine dgtsv for inverting tridiago-

nal matrices (included in the file tridiag.f). Makefile must be updated by adding src1.f and
tridiag.f.

1 c =========================================================
2 subroutine src1(meqn,mbc,mx,xlower,dx,q,maux,aux,t,dt)
3 c =========================================================
4 implicit double precision (a-h,o-z)
5 dimension q(meqn,1-mbc:mx+mbc)
6 c
7 c # solve the diffusion equation q_t = q_{xx} using Crank-Nicolson
8 c # The LAPACK tridiagonal solver dgtsv is used, which is in tridiag.f
9 c # local storage:

10 parameter (maxldb = 5000)
11 dimension b(maxldb,1), d(maxldb), dl(maxldb), du(maxldb)
12 common /comsrc/ dcoef
13
14 if (mx .gt. maxldb) then
15 write(6,*) 'ERROR: increase maxldb in src1.f'
16 endif
17 ldb = maxldb
18 nrhs = 1
19 dtdx2 = dcoef * dt / (2.d0*dx*dx)
20 c # set coefficients in tridiagonal matrix and RHS:
21 do i=1,mx
22 dl(i) = -dtdx2
23 d(i) = 1.d0 + 2.d0*dtdx2
24 du(i) = -dtdx2
25 b(i,1) = q(1,i) + dtdx2 * (q(1,i-1) - 2.d0*q(1,i) + q(1,i+1))
26 enddo
27 c # no-flux boundary conditions for diffusion step:
28 c # Adjust matrix entries to use q(1,0)=q(1,1) and q(1,mx+1)=q(1,mx)
29 c # at end of time step:
30 d(1) = d(1) - dtdx2
31 d(mx) = d(mx) - dtdx2
32 c # solve the tridiagonal system:
33 call dgtsv(mx,nrhs,dl,d,du,b,ldb,info)
34
35 if (info .ne. 0) then
36 write(6,*) 'ERROR in src1 from call to dgtsv... info = ',info
37 stop
38 endif
39
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40 do i=1,mx
41 q(1,i) = b(i,1)
42 enddo
43 return
44 end

We first test the code to the unit box case. The initial condition is

u(x, 0) =


0 if x < −1

2 ,
1 if − 1

2 ≤ x ≤ 1
2 ,

0 if x > 1
2 .

The file qinit.f encodes this initial condition.
1 c =========================================================
2 subroutine qinit(meqn,mbc,mx,xlower,dx,q,maux,aux)
3 c =========================================================
4 c # Set initial conditions for q.
5 c
6 implicit double precision (a-h,o-z)
7 dimension q(meqn,1-mbc:mx+mbc)
8 dimension aux(maux,1-mbc:mx+mbc)
9 common /comsrc/ dcoef

10 c
11 do 150 i=1,mx
12 xcell = xlower + (i-0.5d0)*dx
13 c # unit box
14 q(1,i) = 1.d0
15 if (xcell .lt. -0.5d0) q(1,i) = 0.d0
16 if (xcell .gt. 0.5d0) q(1,i) = 0.d0
17 150 continue
18 return
19 end

Figure 4.2 compares the numerical solution with the exact solution computed using Eq. (4.19) (eval-
uated numerically).
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Figure 4.2 Snapshots of the solution at time t = 0.1 s and t = 0.5. Parameter ν = 0.5 m2/s.

We now consider the travelling-wave case. The initial state is calculated using Eq. (4.22) evaluated
at t = 0:

u(x, 0) =
ul + ur

2
−
∣∣∣∣ul − ur

2

∣∣∣∣ tanh(ul − ur
4ν

x

)
.
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The file qinit.f initiates the travelling wave solution by using (4.22) at time t = 0.
1 c =========================================================
2 subroutine qinit(meqn,mbc,mx,xlower,dx,q,maux,aux)
3 c =========================================================
4 c # Set initial conditions for q.
5 c
6 implicit double precision (a-h,o-z)
7 dimension q(meqn,1-mbc:mx+mbc)
8 dimension aux(maux,1-mbc:mx+mbc)
9 common /comsrc/ dcoef

10
11 do 150 i=1,mx
12 xcell = xlower + (i-0.5d0)*dx
13 ul = 0.d0
14 ur = 2.d0
15 q(1,i) = (ur+ul)/2-dabs((ul-ur))/2.d0*tanh(xcell*(ul-ur)/
16 & 4.d0/dcoef)
17 150 continue
18 c
19 return
20 end

Figure 4.3 compares the numerical solution with the exact solution computed using Eq. (4.22).
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Figure 4.3 Snapshots of the solution at time t = 0.1 s and t = 0.5. Parameters ν = 0.5 m2/s, ul = 2,
and ur = 0. Lax–Wendroff scheme (limiter: superbee) with ∆x = 10−2 m.

4.4.3 Numerical implementation in Pyclaw

We implemented the Crank–Nicolsonmethod in the previous Pyclaw script used for solving the inviscid
case. For the application, we used the same parameters as above: ν = 0.5m2/s, ul = 2, and ur = 0. We
use the built-in Scipy function solve_banded, which provides the numerical solution to B · qn+1 =
F (qn), where B is a band matrix.
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1 %matplotlib inline
2
3 from numpy import sqrt, log, tanh
4 from clawpack import riemann
5 from clawpack import pyclaw
6
7 # Travelling wave solution
8 def travel(x,t,ul,ur,nu): return (ur+ul)/2-abs((ul-ur))/2*tanh((x-(ur+ul)

/2*t)*(ul-ur)/4/nu )
9

10 def qtrue(x,t,ul,ur,nu):
11 """
12 The true solution, for comparison.
13 """
14 import numpy as np
15 dim = x.shape[0]
16 q = np.empty(dim)
17
18 for i in range(dim):
19 q[i] = travel(x[i],t,ul,ur,nu)
20 return q
21
22
23
24 def source_term(solver, state, dt):
25 from scipy.linalg import solve_banded
26 import numpy as np
27 qs = state.q[0,:]
28 xc = state.grid.c_centers[0]
29 nx = xc.size
30 dx = (xc[-1]-xc[0])/nx
31 nu = state.problem_data['nu']
32 r = nu*dt/(dx**2*2.)
33 m = qs.shape[0]
34 b = np.empty(m)
35 for i in range(m):
36 if i == 0:
37 b[0] = (1-r)*qs[0]+r*qs[1]
38 elif i == m-1:
39 b[m-1] = (1-r)*qs[m-1]+ r*qs[m-2]
40 else:
41 b[i] = r*qs[i-1]+(1-2*r)*qs[i]+r*qs[i+1]
42
43 ab = np.empty((3,m))
44 ab[0,1:] = [-r]*(m-1)
45 ab[1,:] = [1+2*r]*m
46 ab[2,:-1] = [-r]*(m-1)
47 ab[1,0] = 1+r
48 ab[1,-1]=1+r
49 state.q[0,:] = solve_banded((1,1),ab,b)
50
51
52 def setup(outdir='./_output', output_style=1):
53
54 solver = pyclaw.ClawSolver1D()
55 solver.rp = riemann.burgers_1D_py.burgers_1D
56
57 solver.num_waves = 1
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58 solver.num_eqn = 1
59 solver.kernel_language = 'Python'
60 solver.limiters = pyclaw.limiters.tvd.superbee
61 solver.bc_lower[0] = pyclaw.BC.extrap
62 solver.bc_upper[0] = pyclaw.BC.extrap
63 solver.order = 2 #1: Godunov, 2: Lax-Wendroff-LeVeque
64
65 solver.step_source = source_term # inclusion of source term
66
67 mx = 600
68 x = pyclaw.Dimension(-3, 3, mx, name='x')
69 domain = pyclaw.Domain(x)
70 num_eqn = 1
71
72 state = pyclaw.State(domain, num_eqn)
73
74 # Parameters
75 nu = 0.5
76 ul = 2
77 ur = 0
78 state.problem_data['efix'] = True
79 state.problem_data['nu'] = nu #diffusivity
80 state.problem_data['ul'] = ul #left state
81 state.problem_data['ur'] = ur #right state
82
83 xc = domain.grid.x.centers
84
85 #for i in range(mx):
86 #state.q[0,i] = travel(xc[i],0,ul,ur,nu) #initial condition
87
88 state.q[0,:] = travel(xc,0,ul,ur,nu)
89
90 claw = pyclaw.Controller()
91 claw.solution = pyclaw.Solution(state, domain)
92 claw.solver = solver
93 claw.outdir = outdir
94 claw.output_style = output_style
95 claw.tfinal = 2.0
96 claw.num_output_times = 20
97 claw.keep_copy = True
98
99 return claw

We ran the code and plotted the solution for time t = 1 s.
1 claw = setup()
2 claw.run()
3 %matplotlib inline
4 import numpy as np
5 import matplotlib.pyplot as plt
6 plt.rcParams['text.usetex'] = True
7 index = 10
8 frame = claw.frames[index]
9 dt = claw.tfinal/claw.num_output_times

10 t = dt*index
11 x = frame.state.grid.c_centers
12 x = x[0]
13
14 ul = frame.state.problem_data['ul']
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15 ur = frame.state.problem_data['ur']
16 nu = frame.state.problem_data['nu']
17 true = qtrue(x,t,ul,ur,nu)
18 fig, ax = plt.subplots(figsize=(5, 2.7))
19 w = frame.q[0,:]
20
21 ax.plot(x, w, label='Clawpack sol.')
22 ax.plot(x, true, ':',label='exact solution')
23 ax.legend(loc='right')
24 ax.set_xlabel(r'$x$')
25 ax.set_ylabel(r'$q$')
26 plt.savefig("ViscousBurgerClaw.pdf")

Figure 4.3 compares the numerical solution with the exact solution computed using Eq. (4.22) at
time t = 1 s.
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Here is an animation:
1 nsimul=np.size(claw.frames)
2 figs = []
3 for i in range(nsimul):
4 fig, ax = plt.subplots(figsize=(5, 3))
5
6
7 frame = claw.frames[i]
8 w = frame.q[0,:]
9 x = frame.state.grid.c_centers

10 x = x[0]
11 dt = claw.tfinal/claw.num_output_times
12 t = dt*i
13 true = qtrue(x,t,ul,ur,nu)
14 ax.set_xlabel(r'$x$')
15 ax.set_ylabel(r'$q$')
16 plt.plot(x, w)
17 plt.plot(x, true, '--',color = 'r')
18 figs.append(fig)
19 plt.close(fig)
20
21 from clawpack.visclaw import animation_tools
22 animation_tools.interact_animate_figs(figs)
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We can export an animation of the solution at different times and compare with the exact solution
using FuncAnimation from the library matplotlib.animation.

1 def q_true(t,ul,ur,nu):
2 import numpy
3 # True Solution
4 x_true = numpy.linspace(-3.0, 3.0, 1000)
5 q_true = travel(x_true,t,ul,ur,nu)
6 return q_true
7
8 def burgers_animation(ul=2, ur=0, nu=0.5):
9 import matplotlib.animation

10 import numpy
11 # compute the solution with the method define above:
12 claw = setup()
13 claw.keep_copy = True
14 claw.run()
15 x = claw.frames[0].grid.dimensions[0].centers
16 x_true = numpy.linspace(-3.0, 3.0, 1000)
17
18 fig = plt.figure()
19 axes = plt.subplot(1, 1, 1)
20 axes.set_xlim((x[0], x[-1]))
21 axes.set_ylim((-0.1, 2))
22 axes.set_title("Viscous burgers equation")
23
24 def init():
25 axes.set_xlim((x[0], x[-1]))
26 axes.set_ylim((-0.1,2.1))
27 computed_line, = axes.plot(x[0], claw.frames[0].q[0, :][0], 'ro')
28 exact_line, = axes.plot(x_true[0], q_true(0.0,ul,ur,nu)[0], 'k')
29 return (computed_line, exact_line)
30
31 computed_line, exact_line = init()
32
33 def fplot(n):
34 computed_line.set_data([x,], [claw.frames[n].q[0, :]])
35 exact_line.set_data([x_true], [q_true(claw.frames[n].t,ul,ur,nu)])
36 return (computed_line, exact_line)
37
38 frames_to_plot = range(0, len(claw.frames))
39 plt.close(fig)
40 return matplotlib.animation.FuncAnimation(fig, fplot, frames=

frames_to_plot, interval=100,
41 blit=True, init_func=init, repeat=False)
42
43 from IPython.display import HTML
44 anim = burgers_animation()
45 HTML(anim.to_jshtml())
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We can export the animation using save as a video using save:
1 anim.save('ViscousBurgers.mp4',fps=5,writer="ffmpeg",dpi=300)

It may be useful to export a series of images instead of a video. This can be achieved by different
means. A possibility involves the imagemagick library:

1 anim.save('ViscousBurgers.png', writer="imagemagick",dpi=300)

In the command prompt, we can ask imagemagick to decompose the animation into a series of
images

1 convert -coalesce ViscousBurgers.mp4 ViscousBurgers_.png

It may be more convenient to export directly the figures as pdf or png files:
1 for i in range(len(figs)):
2 figs[i].savefig('ViscousBurgersFrame'+str(i)+'.png', bbox_inches='tight

',dpi=300)

This series of images can be inserted in a pdf file and produce animations, for instance by using the
animate and tikz latex libraries.

1 \animategraphics[autoplay,loop,width=8cm, controls={play, step, stop,
speed},buttonsize=0.3cm]{5}{ViscousBurgersFrame}{1}{20}
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4.5 Nonlinear advection equation with a source term

4.5.1 Theoretical considerations

Let us consider a rainfall of intensity I over a sloping bed inclined at α (see Fig. 4.4). There are two
possible runoff mechanisms: superficial or hyporheic flow. For both cases, we assume that the flow
depth is h(x, t) and velocity u(x, t) related to h: u = ahb, where a and b are two coefficients: a = C

√
α

et b = 1/2 if one considers runoff with a Chézy friction C .

Figure 4.4 Flow generated by a rainfall.

The governing equation is given by mass conservation:

∂h

∂t
+

∂hu

∂x
= I. (4.24)

As we have u = ahb, we obtain:

∂h

∂t
+ c(h)

∂h

∂x
= I with c(h) = a(b+ 1)hb.

or in a characteristic form:

dh
dt = I along dx

dt = c(h) = a(b+ 1)hb,

and we assume that initially the flow depth is zero (dry bed: h(x, 0) = 0) and no water comes from
upstream of x0 (h(x0, t) = 0). The solution to the characteristic equation is h = It along the charac-
teristic curve:

x =

∫
a(b+ 1)hbdt+ x1 = aIbt1+b + x1, (4.25)

where x1 is constante of integration (such that at x = x1, we have h = 0). This implies for any x
(0 ≤ x ≤ x0, with the frame used in Fig. 4.4, x0 = L0), we have:
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• a linear growth h(x, t) = It until time t∞ such that aIbt1+b
∞ = x0 − x ;

• a stationary state for:

h(x, t) = h∞(x) =

(
I(x0 − x)

a

)1/(1+b)

.
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Figure 4.5 (a) characteristic curves (4.25). The thick line represents x = aIbt1+b, the path of a fluid
parcel emitted from x0. The coloured area represents the domain controlled by the initial condition
h = 0 for which we observe a linear growth h(x, t) = It. Above the curve x = aIbt1+b, the depth
is constant and equal to h∞(x). (b) Flow depth variation at x = 0. Computation for arbitrary values
a = 1 1/s b = 1, I = 1 m/s, and x0 = 3 m.

4.5.2 Numerical implementation

2 import numpy as np
3 import matplotlib.pyplot as plt
4 import os
5 from clawpack import riemann
6 plt.ioff()
7
8 #!/usr/bin/env python
9 # encoding: utf-8

10
11 r"""
12 Burgers' equation
13 """
14 def source_term(solver, state, dt):
15 i = state.problem_data['i']
16 h = state.q[0, :]
17 # Update to momentum
18 state.q[0, :] += dt * i
19
20 def inlet_bc(state,dim,t,qbc,auxbc,num_ghost):
21 "inlet boundary conditions"
22 qbc[0, :num_ghost] = 0.
23
24 def b4step(solver,state):
25 h = state.q[0,:]
26 t = state.t
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27 hf = h[-1]
28 front.append([t,hf])
29
30
31 def setup(use_petsc=0,kernel_language='Fortran',outdir='./_output',

solver_type='classic'):
32
33 if use_petsc:
34 import clawpack.petclaw as pyclaw
35 else:
36 from clawpack import pyclaw
37
38 if kernel_language == 'Python':
39 riemann_solver = riemann.burgers_1D_py.burgers_1D
40 elif kernel_language == 'Fortran':
41 riemann_solver = riemann.burgers_1D
42
43 if solver_type=='sharpclaw':
44 solver = pyclaw.SharpClawSolver1D(riemann_solver)
45 else:
46 solver = pyclaw.ClawSolver1D(riemann_solver)
47 solver.limiters = pyclaw.limiters.tvd.vanleer
48 solver.kernel_language = kernel_language
49
50 solver.bc_lower[0] = pyclaw.BC.custom
51 solver.user_bc_lower = inlet_bc
52 solver.bc_upper[0] = pyclaw.BC.extrap
53 solver.step_source = source_term
54 solver.before_step = b4step
55
56 x = pyclaw.Dimension(0.0,10.0,1000,name='x')
57 domain = pyclaw.Domain(x)
58 num_eqn = 1
59 state = pyclaw.State(domain,num_eqn)
60 xc = state.grid.x.centers
61 state.q[0,:] = 0.
62 state.problem_data['efix']=True
63 state.problem_data['i'] = 1
64
65 claw = pyclaw.Controller()
66 claw.tfinal = 10
67 claw.num_output_times = 20
68 claw.solution = pyclaw.Solution(state,domain)
69 claw.solver = solver
70 claw.outdir = outdir
71 claw.setplot = setplot
72 claw.keep_copy = True
73
74 return claw
75
76 def setplot(plotdata):
77 """
78 Plot solution using VisClaw.
79 """
80 plotdata.clearfigures() # clear any old figures,axes,items data
81 # Figure for q[0]
82 plotfigure = plotdata.new_plotfigure(name='q[0]', figno=0)
83
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84 # Set up for axes in this figure:
85 plotaxes = plotfigure.new_plotaxes()
86 plotaxes.xlimits = 'auto'
87 plotaxes.ylimits = [-1., 2.]
88 plotaxes.title = 'q[0]'
89 # Set up for item on these axes:
90 plotitem = plotaxes.new_plotitem(plot_type='1d')
91 plotitem.plot_var = 0
92 plotitem.plotstyle = '-o'
93 plotitem.color = 'b'
94
95 return plotdata

96 front = []
97 claw = setup()
98 claw.run()
99

100 ind=5
101 ind2=20
102 delta_t=claw.tfinal/claw.num_output_times
103
104 fig = plt.figure(figsize=(8,4))
105 left, bottom, width, heigth = 0.2, 0.2, 0.8, 0.8
106 ax = fig.add_axes((left ,bottom, width, heigth ))
107 ax.ylimits = [0,0.1]
108 frame = claw.frames[ind]
109 h = frame.q[0,:]
110 frame = claw.frames[ind2]
111 h2 = frame.q[0,:]
112
113 x = frame.state.grid.x.centers
114 ax.plot(x,h,label='t = {:.2f}'.format(ind*delta_t))
115 ax.plot(x,h2, 'k-.',label='t {:.2f}'.format(ind2*delta_t))
116
117 ax.set_xlabel(r'$x$ (m)')
118 ax.set_ylabel(r'$y$ (m)')
119 ax.legend()
120 plt.show()
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Figure 4.6 Numerical solutions at time t = 2.5 s and t = 10 s.



CHAPTER5
Shallow water equations

5.1 Theory

The shallowwater equations (also called the Saint-Venant) equations consist of the depth-averagedmass
and momentum balance equations for a water flow along a sloping bed (Saint-Venant, 1871). In this
chapter, we consider the simplest case, in which the bottom is horizonal and exerts no resistance, and
the flow is one-directional. In this case, the conservative form of the governing equations comprises
the mass balance equation:

∂h

∂t
+

∂q

∂x
= 0, (5.1)

the momentum balance equation
∂q

∂t
+

∂hu2

∂x
+ gh

∂h

∂x
= 0, (5.2)

where g is gravitational acceleration, h denotes the flow depth, q = hu is the flow rate, and u the
depth-averaged velocity. The unknowns are q and h. In a matrix form, Eqs. (5.1)-(5.2) takes the form:

∂

∂t
Q+

∂

∂x
f(Q) = 0, (5.3)

where the flux function is:

f =

(
q

q2/h+ gh2/2

)
and Q =

(
h
q

)
. (5.4)

The Jacobian is

f ′ =

(
0 1

−q2/h2 + gh 2q/h

)
, (5.5)

whose eigenvalues are
λ1 = u−

√
gh and λ2 = u+

√
gh, (5.6)

associated with the right eigenvectors:

w1 =

(
1

u−
√
gh

)
and w2 =

(
1

u+
√
gh

)
. (5.7)

5.1.1 Dam break solution

Let us consider the dam break problem on a wet bed (that is, the initial flow depth is nonzero every-
where):

h(x, 0) =

{
hl for x < 0,
hr for x > 0,

(5.8)

147
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and u(x, 0) = 0 everywhere, and we assume that hl > hl. The solution’s structure is shown by Fig. 5.1.
There is an intermediate state Q = (h∗, q∗) separated from the left initial state Ql by a rarefaction
wave, and from the right initial state Qr by a shock wave.

Figure 5.1 Dambreak with an intermediate state separated from the left initial state by a rarefaction
wave, and from the right initial state by a shock wave.

The intermediate state satisfies the Rankine–Hugoniot condition:

s(Q∗ −Qr) = f(Q∗)− f(Qr), (5.9)

which implies that the shock speed is

s =
q∗ − qr
h∗ − hr

= u∗ ∓
√
ghr

hr + h∗
2h∗

,

By eliminating the shock speed in Eq. (5.9), we find that the flow rate q∗ depends on the initial rate qr
(which is 0 in the example here, but we will keep it here to outline the general case) and depth hr:

q∗ = qr + (h∗ − hr)

(
ur ±

√
ghr

(
1 +

h∗ − hr
hr

)(
1 +

h∗ − hr
2hr

))
, (5.10)

or in terms of the velocity u∗:

u∗ = ur ± (h∗ − hr)

√
g

2

(
1

hr
+

1

h∗

)
. (5.11)

The intermediate state is also connected to the left state by the rarefaction wave. Let us remember
that a rarefaction wave is a similarity solution Q(ξ) with ξ = x/t (see § 1.4.4). Substituting this form
into the hyperbolic system (5.3) gives:

−ξQ′(ξ) + f ′(Q) ·Q′(ξ) = 0,

which shows that Q′(ξ) is a right eigenvector of the Jacobian matrix f ′, and thus there exists a scalar
coefficient α(ξ) such that

Q′(ξ) = α(ξ)wk,
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with k = 1, 2. Let us assume that α = 1 and take k = 1 (that is, we are looking for the 1-rarefaction
wave). We have to solve:

Q′(ξ) =

(
h′

q′

)
=

(
1

u−
√
gh

)
.

By setting the first constant of integration to zero, we find:

h(ξ) = ξ,

and
q′ =

q

ξ
−
√

gξ ⇒ q(ξ) = aξ − 2ξ
√

gξ,

where a is a constant of integration. As we have h = ξ, this means that we also have q(h) = ah −
2h

√
gh. We impose that the intermediate state lies on the rarefaction wave, and thus

q∗ = ah∗ − 2h∗
√
gh∗ ⇒ a = u∗ + 2h∗

√
gh∗.

The 1-rarefaction is thus the curve

q(h) = hu∗ + 2h(
√
gh∗ −

√
gh). (5.12)

In the (u, h) coordinate system, the 1-rarefaction wave satisfies:

u+ 2
√
gh = u∗ + 2

√
gh∗. (5.13)
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Figure 5.2 Phase plane for hl = 3 and hr = 1 (with g = 1 m/s2).

5.2 Approximate solver: the Roe solver

5.2.1 Derivation

The Roe solver involves linearising the Jacobian § 2.5:

Âi−1/2 =

∫ 1

0

df(q(ξ))
dq dξ, (5.14)
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where the Jacobian ∇f has been defined by Eq. (5.5) and the integral path is the straight line:

q = Qi−1 + ξ(Qi −Qi−1).

It has been shown in § 2.5 that the matrix Âi−1/2 satisfies Eq. (2.50)

f(Qi)− f(Qi−1) = Âi−1/2 · (Qi −Qi−1),

when Qi−1 and Qi are connected by the same wave (shock or rarefaction). This property is essential
to ensure that the method is conservative.

The problem is that integrating Eq. (5.14) is made intricate by the coupling between variables q and
h in the entries of∇f . Roe (1981) found a change of variable z = z(q), which allows him to solve this
issue for the Euler equations. A similar trick can be applied to the shallow water equations. We make
the following change of variable

z =

(
z1
z2

)
,

=
q√
h
=

( √
h

u
√
h

)
. (5.15)

The inverse mapping is:

q =

(
z21
z1z2

)
⇒ dq

dz =

(
2z1 0
z2 z1

)
. (5.16)

whose determinant is 2z21 > 0wherever the flow depth is nonzero (as a consequence, z(q) is invertible
everywhere). With the new variables, the flux function and its Jacobian become

f =

(
z1z2

z22 +
1
2gz

4
1

)
⇒ df

dz =

(
z2 z1

2gz31 2z2

)
.

Using the change of variable, we now integrate

f(Qi)− f(Qi−1) =

∫ 1

0

df
dξ (z)dξ

along the straight line
z = Zi−1 + (Zi −Zi−1)ξ.

As the ξ derivative of z gives z′ = Zi −Zi−1, we obtain

f(Qi)− f(Qi−1) =

∫ 1

0

df
dz (z) ·

dz
dξ dξ,

=

∫ 1

0

df
dz (z)dξ · (Zi −Zi−1),

=

(
Z̄2 Z̄1

2gZ̄1h̄ 2Z̄2 ,

)
· (Zi −Zi−1) (5.17)

where the kth average component Z̄k is defined as:

Z̄k =
1

2
(Zk

i−1 + Zk
i ) and h̄ =

1

2
(hi−1 + hi).
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Proof. Integration zk does not pose problems (where k = 1 or 2):∫ 1

0
zkdξ =

∫ 1

0
(Zk

i−1 + ξ(Zk
i − Zk

i−1))dξ,

=

[
ξZk

i−1 +
ξ

2
(Zk

i − Zk
i−1

]1
0

,

=
ξ

2
(Zk

i + Zk
i−1),

= Z̄k. (5.18)

The cubic term (z1)3 requires more work:∫ 1

0
(z1)3dξ =

∫ 1

0
(Zk

i−1 + ξ(Zk
i − Zk

i−1))
3dξ,

=
1

Zk
i − Zk

i−1

∫ Zk
i

Zk
i−1

η3dη,

=
1

4(Zk
i − Zk

i−1)

[
η4
]Zk

i

Zk
i−1

,

=
1

4

(Zk
i )

4 − (Zk
i−1)

4

Zk
i − Zk

i−1

,

=
(Zk

i )
2 + (Zk

i−1)
2

2

Zk
i + Zk

i−1

2
,

= Z̄1h̄,

since (Zk
i )

2 + (Zk
i−1)

2 = hi + hi−1. ⊓⊔

We now have Eq. (5.17), which relates the flux difference f(Qi)−f(Qi−1) toZi−Zi−1. We need
to expressQi−Qi−1 as a function ofZi−Zi−1 so that we can directly relate the flux difference to the
difference Qi −Qi−1. To that end, we will use the following integral path q = Qi−1 + ξ(Qi −Qi−1)
and integrate dq along it:

Qi −Qi−1 =

∫ 1

0

dq(ξ)
dξ dξ =

∫ 1

0

dq
dz · dzdξ dξ

=

(
2Z̄1 0
Z̄2 Z̄1

)
· (Zi −Zi−1),

where we made use of the definition (5.16) of the Jacobian ∇q(z) together with the relation (5.18). We
eventually find:

Âi−1/2 =

(
Z̄2 Z̄1

2gZ̄1h̄ 2Z̄2

)
·
(

2Z̄1 0
Z̄2 Z̄1

)−1

=

(
0 1

gh̄− (Z̄2/Z1)
2 2Z̄2/Z̄1

)
,

and after returning to the original variables

Âi−1/2 =

(
1 1

−û+ gh̄ 2û

)
where û =

√
hi−1ui−1 +

√
hiui√

hi−1 +
√
hi

. (5.19)

The Roe matrix is thus the Jacobian matrix f ′(q) evaluated at the intermediate state q = (h̄, h̄û). It
has the eigenvalues

λ1 = û−
√

gh̄ and λ2 = û+

√
gh̄,
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associated with the right eigenvectors:

w1 =

(
1

û−
√

gh̄

)
and w2 =

(
1

û+
√

gh̄

)
. (5.20)

We can decompose the initial jump Qi −Qi−1 in the right eigenvector basis (wk)k=1,2 as

∆Q = Qi −Qi−1 = R ·α, (5.21)

where R = [w1, w2] is the right-eigenvector matrix. We then deduce the α coefficients by inverting
the matrix R

α = R−1 ·∆Q,

=
1

2ĉ

(
û+ ĉ −1
ĉ− û 1

)
·∆Q, (5.22)

=
1

2ĉ

(
(û+ ĉ)∆Q1 −∆Q2

(−û+ ĉ)∆Q1 +∆Q2

)
, (5.23)

where ĉ =
√
gh̄ and ∆Q = (∆Q1, ∆Q2).

5.2.2 Wave form

To summarize the results, we need the following equations to write the Roe solver’s algorithm:

• The velocities associated with the intermediate state

û =
qi−1/

√
hi−1 + qi/

√
hi√

hi−1 +
√
hi

and ĉ =

√
gh̄ =

√
1

2
(
√

hi−1 +
√
hi). (5.24)

• The waves W k:
W k = αkwk, k = 1, 2 (5.25)

where αk are the components of the α vector given by Eq. (5.22) and wk are the right eigenvec-
tors of the Roe matrix given by Eq. (5.20).

• the characteristic speeds
s1 = û− ĉ and s2 = û+ ĉ. (5.26)

• The fluctuations are

A− ·∆Qi−1/2 =
2∑

k=1

min(λk
i−1/2, 0)W k,i−1/2,

A+ ·∆Qi+1/2 =
2∑

k=1

max(λk
i−1/2, 0)W k,i−1/2,

which gives in the present context:

– if sk < 0, then amdq(m,i)=s*wave.

– if sk > 0, then apdq(m,i)=s*wave.
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5.2.3 Sonic entropy fix

We have seen in § 2.4.2 that when the solution to the Riemann problem is a transonic wave, the Roe
approximate solution may be incorrect (see also LeVeque, 2002, § 15.3.5). In that case, there is usually
an intermediate state Q∗ between the left and right states Qi−1 and Qi, and the associated speeds are

• for the first eigenvalue

λ∗
i−1 = ui−1 −

√
ghi−1, λ

1
∗ = u∗ −

√
gĥ∗

• for the second eigenvalue

λ2
∗ = u∗ +

√
gĥ∗, λ

2
i = ui +

√
gĥi.

When λ1
i−1 < 0 < λ1

∗ (resp. λ2
∗ < 0 < λ2

i ), we should consider that the 1-wave (resp. the 2-wave) is a
transonic rarefaction wave rather than a 1-shock wave (see Fig. 5.3).
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Figure 5.3 (a) In the general case, there is an intermediate stateQ∗ connecting the left and right states
Qi−1 andQi by 1- and 2-waves of respective velocity λ1 and λ2. (b) If λ1

i−1 < 0 < λ1
∗, then the 1-wave

is a transonic wave. (c) If λ2
∗ < 0 < λ2

i , then the 2-wave is a transonic wave.

By using the analytical expression (1.116) for a centred rarefaction wave (evaluated at ξ = 0), we
can deduce the interface value

hi−1/2 =
1

9g

(
ui−1 + 2

√
ghi−1

)2
, (5.27)
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while Eq. (1.115) yields:
ui−1/2 = ui−1 + 2

(√
ghi−1 −

√
ghi−1/2

)
(5.28)

The flux fluctuations are computed using Eqs. (2.48) and (2.49).

5.2.4 Implementation in Clawpack

Here is how the Roe solver is implemented in Clawpack (without andwithout the entropy fix to compute
transonic wave).

121 subroutine rp1(maxmx,num_eqn,num_waves,num_aux,num_ghost,num_cells, &
122 ql,qr,auxl,auxr,wave,s,amdq,apdq)
123
124 ! waves: 2
125 ! equations: 2
126
127 implicit none
128 integer, intent(in) :: maxmx, num_eqn, num_waves, num_aux, num_ghost, &
129 num_cells
130 real(kind=8), intent(in), dimension(num_eqn,1-num_ghost:maxmx+num_ghost

) :: ql, qr
131 real(kind=8), intent(in), dimension(num_aux,1-num_ghost:maxmx+num_ghost

) :: auxl, auxr
132 real(kind=8), intent(out) :: s(num_waves, 1-num_ghost:maxmx+num_ghost)
133 real(kind=8), intent(out) :: wave(num_eqn, num_waves, 1-num_ghost:maxmx

+num_ghost)
134 real(kind=8), intent(out), dimension(num_eqn,1-num_ghost:maxmx+

num_ghost) :: amdq,apdq
135
136 ! local variables:
137 real(kind=8) :: a1,a2,ubar,cbar,s0,s1,s2,s3,hr1,uhr1,hl2,uhl2,sfract,df
138 real(kind=8) :: delta(2)
139 integer :: i,m,mw
140
141 logical :: efix
142
143 data efix /.true./ !# Use entropy fix for transonic rarefactions
144
145 ! Gravity constant set in setprob.f or the shallow1D.py file
146 real(kind=8) :: grav
147 common /cparam/ grav
148
149 ! Main loop of the Riemann solver.
150 do 30 i=2-num_ghost,num_cells+num_ghost
151
152
153 ! compute Roe-averaged quantities:
154 ubar = (qr(2,i-1)/dsqrt(qr(1,i-1)) + ql(2,i)/dsqrt(ql(1,i)))/ &
155 ( dsqrt(qr(1,i-1)) + dsqrt(ql(1,i)) )
156 cbar=dsqrt(0.5d0*grav*(qr(1,i-1) + ql(1,i)))
157
158 ! delta(1)=h(i)-h(i-1) and delta(2)=hu(i)-hu(i-1)
159 delta(1) = ql(1,i) - qr(1,i-1)
160 delta(2) = ql(2,i) - qr(2,i-1)
161
162 ! Compute coeffs in the evector expansion of delta(1),delta(2)
163 a1 = 0.5d0*(-delta(2) + (ubar + cbar) * delta(1))/cbar
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164 a2 = 0.5d0*( delta(2) - (ubar - cbar) * delta(1))/cbar
165
166 ! Finally, compute the waves.
167 wave(1,1,i) = a1
168 wave(2,1,i) = a1*(ubar - cbar)
169 s(1,i) = ubar - cbar
170
171 wave(1,2,i) = a2
172 wave(2,2,i) = a2*(ubar + cbar)
173 s(2,i) = ubar + cbar
174
175 30 enddo
176
177 ! Compute fluctuations amdq and apdq
178 ! ------------------------------------
179
180 if (efix) go to 110
181
182 ! No entropy fix
183 ! ----------------------------------------------
184 ! amdq = SUM s*wave over left-going waves
185 ! apdq = SUM s*wave over right-going waves
186
187 do m=1,2
188 do i=2-num_ghost, num_cells+num_ghost
189 amdq(m,i) = 0.d0
190 apdq(m,i) = 0.d0
191 do mw=1,num_waves
192 if (s(mw,i) < 0.d0) then
193 amdq(m,i) = amdq(m,i) + s(mw,i)*wave(m,mw,i)
194 else
195 apdq(m,i) = apdq(m,i) + s(mw,i)*wave(m,mw,i)
196 endif
197 enddo
198 enddo
199 enddo
200
201 ! with no entropy fix we are done...
202 return
203
204
205 ! -----------------------------------------------
206
207 110 continue
208
209 ! With entropy fix
210 ! ------------------
211
212 ! compute flux differences amdq and apdq.
213 ! First compute amdq as sum of s*wave for left going waves.
214 ! Incorporate entropy fix by adding a modified fraction of wave
215 ! if s should change sign.
216
217 do 200 i=2-num_ghost,num_cells+num_ghost
218
219 ! ------------------------------------------------------
220 ! check 1-wave:
221 ! ---------------
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222
223 ! u-c in left state (cell i-1)
224 s0 = qr(2,i-1)/qr(1,i-1) - dsqrt(grav*qr(1,i-1))
225
226 ! check for fully supersonic case:
227 if (s0 >= 0.d0 .and. s(1,i) > 0.d0) then
228 ! everything is right-going
229 do m=1,2
230 amdq(m,i) = 0.d0
231 enddo
232 go to 200
233 endif
234
235 ! u-c to right of 1-wave
236 hr1 = qr(1,i-1) + wave(1,1,i)
237 uhr1 = qr(2,i-1) + wave(2,1,i)
238 s1 = uhr1/hr1 - dsqrt(grav*hr1)
239
240 if (s0 < 0.d0 .and. s1 > 0.d0) then
241 ! transonic rarefaction in the 1-wave
242 sfract = s0 * (s1-s(1,i)) / (s1-s0)
243 else if (s(1,i) < 0.d0) then
244 ! 1-wave is leftgoing
245 sfract = s(1,i)
246 else
247 ! 1-wave is rightgoing
248 sfract = 0.d0 !# this shouldn't happen since s0 < 0
249 endif
250
251 do m=1,2
252 amdq(m,i) = sfract*wave(m,1,i)
253 enddo
254
255 ! -------------------------------------------------------
256 ! check 2-wave:
257 ! ---------------
258 ! u+c in right state (cell i)
259 s3 = ql(2,i)/ql(1,i) + dsqrt(grav*ql(1,i))
260
261 ! u+c to left of 2-wave
262 hl2 = ql(1,i) - wave(1,2,i)
263 uhl2 = ql(2,i) - wave(2,2,i)
264 s2 = uhl2/hl2 + dsqrt(grav*hl2)
265
266 if (s2 < 0.d0 .and. s3 > 0.d0) then
267 ! transonic rarefaction in the 2-wave
268 sfract = s2 * (s3-s(2,i)) / (s3-s2)
269 else if (s(2,i) < 0.d0) then
270 ! 2-wave is leftgoing
271 sfract = s(2,i)
272 else
273 ! 2-wave is rightgoing
274 go to 200
275 endif
276
277 do m=1,2
278 amdq(m,i) = amdq(m,i) + sfract*wave(m,2,i)
279 enddo
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280
281 200 enddo
282
283 ! compute the rightgoing flux differences:
284 ! df = SUM s*wave is the total flux difference and apdq = df - amdq
285
286 do m=1,2
287 do i = 2-num_ghost, num_cells+num_ghost
288 df = 0.d0
289 do mw=1,num_waves
290 df = df + s(mw,i)*wave(m,mw,i)
291 enddo
292 apdq(m,i) = df - amdq(m,i)
293 enddo
294 enddo
295
296 return
297
298 end subroutine rp1

5.2.5 Implementation in Pyclaw

Here is how the Roe solver is implemented in Pyclaw
299 def shallow_roe_1D(q_l, q_r, aux_l, aux_r, problem_data):
300 r"""
301 Roe shallow water solver in 1d::
302 """
303 # Array shapes
304 num_rp = q_l.shape[1]
305
306 # Output arrays
307 wave = np.empty( (num_eqn, num_waves, num_rp) )
308 s = np.zeros( (num_waves, num_rp) )
309 amdq = np.zeros( (num_eqn, num_rp) )
310 apdq = np.zeros( (num_eqn, num_rp) )
311
312 # Compute roe-averaged quantities
313 ubar = ( (q_l[1,:]/np.sqrt(q_l[0,:]) + q_r[1,:]/np.sqrt(q_r[0,:])) /
314 (np.sqrt(q_l[0,:]) + np.sqrt(q_r[0,:])) )
315 cbar = np.sqrt(0.5 * problem_data['grav'] * (q_l[0,:] + q_r[0,:]))
316
317 # Compute Flux structure
318 delta = q_r - q_l
319 a1 = 0.5 * (-delta[1,:] + (ubar + cbar) * delta[0,:]) / cbar
320 a2 = 0.5 * ( delta[1,:] - (ubar - cbar) * delta[0,:]) / cbar
321
322 # Compute each family of waves
323 wave[0,0,:] = a1
324 wave[1,0,:] = a1 * (ubar - cbar)
325 s[0,:] = ubar - cbar
326
327 wave[0,1,:] = a2
328 wave[1,1,:] = a2 * (ubar + cbar)
329 s[1,:] = ubar + cbar
330
331 s_index = np.zeros((2,num_rp))
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332 for m in range(num_eqn):
333 for mw in range(num_waves):
334 s_index[0,:] = s[mw,:]
335 amdq[m,:] += np.min(s_index,axis=0) * wave[m,mw,:]
336 apdq[m,:] += np.max(s_index,axis=0) * wave[m,mw,:]
337
338 return wave, s, amdq, apdq

5.3 HLLE solver

5.3.1 Principle

TheHLL method is a two-wave solver that considers that the solution to the Riemann problem consists
of two shock waves separating the intermediate state Q∗ Qi from the left and right initial states Qi−1

and Qi. In § 2.6, we have seen that this intermediate state and the associated flux can be determined
by solving the Rankine–Hugoniot equations for the discontinuities across the two shock waves. Here
we provide another proof based on volume integrals.

Integrating the shallow water equations (5.3) over the domain [x1, x2]× [0,∆t] in the x− t plane
(see Fig. 2.5) gives∫ x2

x1

q(x, ∆t)dx =

∫ x2

x1

q(x, 0)dx+

∫ ∆t

0
f(q(x1, t))dt−

∫ ∆t

0
f(q(x2, t))dt,

where x1 = s1∆t and x2 = s2∆t. Since q(x, 0) is fixed by the initial conditions, we deduce

Q∗ =
1

x2 − x1

∫ x2

x1

q(x, ∆t)dx =
Qix2 −Qi−1x1

x2 − x1
− ∆t

x2 − x1
(F i − F i−1),

where

F i−1 =
1

∆t

∫ ∆t

0
f(q(x1, t))dt and F i =

1

∆t

∫ ∆t

0
f(Q(x2, t))dt.
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We find that the intermediate state is:

Q∗ =
Qis2 −Qi−1s1

s2 − s1
− F i − F i−1

s2 − s1
. (5.29)

In § 2.3.3, we derived the general expression (2.34) for computing the interface flux from the left and
right flux

F i−1/2 = f(Qi−1) +
δx

δt
Qi−1 −

1

δt

∫ 0

−δx
Q(x, δt)dx.

which gives us when we take δx = −x2 = −s2∆t:

F ∗ =
s2F i−1 − s1F i

s2 − s1
− s2s2

Qi−1 −Qi

s2 − s1
. (5.30)

This expression of the flux holds when the two shock waves fan out on either side of x = 0. In that
case, the interface flux is defined as F i−1/2 = F ∗. If both shock waves go to the right (i.e., if s1 > 0)
then F i−1/2 = F i−1. In the opposite case, then F i−1/2 = F i:

F i−1/2 =


F i−1 if s1 > 0,
F ∗ if s1 ≥ 0 ≥ s2,
F i if s2 < 0,

(5.31)

The last problem to be settled is the determination of the shock speed s1 and s2. We use the suggest
of Einfeldt, which explains why the solver is called HLLE. Let us first consider the 1-wave. If this wave
is a rarefaction wave, its speeds ranges from λ1(Qi−1) to λ1(Qi) = ui−1 −

√
ghi−1; we select the

minimum value λ1(Qi−1). If it is a shock, its speed can be estimated using the Roe matrix (5.19):
s1 = û− ĉ. As we do not know whether the 1-wave is a shock or rarefaction wave, we take the lower
bound:

s1 = min(ui−1 −
√
ghi−1, û− ĉ). (5.32)

The same applies for the 2-wave. We define s2 as the upper bound

s2 = max(ui +
√
ghi, û+ ĉ). (5.33)

In short, we compute the Roe averages, and deduce the shock speeds (5.32) and (5.33). The inter-
mediate state is given by Eq (5.29). The waves are

W 1 = Q∗ −Qi−1 and W 2 = Qi −Q∗. (5.34)

The fluctuations are then
A− ·∆Qi−1/2 = s1W 1

A+ ·∆Qi−1/2 = s1W 2.

5.3.2 Implementation in Pyclaw

339 def shallow_hll_1D(q_l,q_r,aux_l,aux_r,problem_data):
340 r"""
341 HLL shallow water solver ::
342
343
344 W_1 = Q_hat - Q_l s_1 = min(u_l-c_l,u_l+c_l,lambda_roe_1,

lambda_roe_2)
345 W_2 = Q_r - Q_hat s_2 = max(u_r-c_r,u_r+c_r,lambda_roe_1,

lambda_roe_2)
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346
347 Q_hat = ( f(q_r) - f(q_l) - s_2 * q_r + s_1 * q_l ) / (s_1 - s_2)
348
349 *problem_data* should contain:
350 - *g* - (float) Gravitational constant
351
352 :Version: 1.0 (2009-02-05)
353 """
354 # Array shapes
355 num_rp = q_l.shape[1]
356 num_eqn = 2
357 num_waves = 2
358
359 # Output arrays
360 wave = np.empty( (num_eqn, num_waves, num_rp) )
361 s = np.empty( (num_waves, num_rp) )
362 amdq = np.zeros( (num_eqn, num_rp) )
363 apdq = np.zeros( (num_eqn, num_rp) )
364
365 # Compute Roe and right and left speeds
366 ubar = ( (q_l[1,:]/np.sqrt(q_l[0,:]) + q_r[1,:]/np.sqrt(q_r[0,:])) /
367 (np.sqrt(q_l[0,:]) + np.sqrt(q_r[0,:])) )
368 cbar = np.sqrt(0.5 * problem_data['grav'] * (q_l[0,:] + q_r[0,:]))
369 u_r = q_r[1,:] / q_r[0,:]
370 c_r = np.sqrt(problem_data['grav'] * q_r[0,:])
371 u_l = q_l[1,:] / q_l[0,:]
372 c_l = np.sqrt(problem_data['grav'] * q_l[0,:])
373
374 # Compute Einfeldt speeds
375 s_index = np.empty((4,num_rp))
376 s_index[0,:] = ubar+cbar
377 s_index[1,:] = ubar-cbar
378 s_index[2,:] = u_l + c_l
379 s_index[3,:] = u_l - c_l
380 s[0,:] = np.min(s_index,axis=0)
381 s_index[2,:] = u_r + c_r
382 s_index[3,:] = u_r - c_r
383 s[1,:] = np.max(s_index,axis=0)
384
385 # Compute middle state
386 q_hat = np.empty((2,num_rp))
387 q_hat[0,:] = ((q_r[1,:] - q_l[1,:] - s[1,:] * q_r[0,:]
388 + s[0,:] * q_l[0,:]) / (s[0,:] - s[1,:]))
389 q_hat[1,:] = ((q_r[1,:]**2/q_r[0,:] + 0.5 * problem_data['grav'] * q_r

[0,:]**2
390 - (q_l[1,:]**2/q_l[0,:] + 0.5 * problem_data['grav'] * q_l

[0,:]**2)
391 - s[1,:] * q_r[1,:] + s[0,:] * q_l[1,:]) / (s[0,:] - s

[1,:]))
392
393 # Compute each family of waves
394 wave[:,0,:] = q_hat - q_l
395 wave[:,1,:] = q_r - q_hat
396
397 # Compute variations
398 s_index = np.zeros((2,num_rp))
399 for m in range(num_eqn):
400 for mw in range(num_waves):
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401 s_index[0,:] = s[mw,:]
402 amdq[m,:] += np.min(s_index,axis=0) * wave[m,mw,:]
403 apdq[m,:] += np.max(s_index,axis=0) * wave[m,mw,:]
404
405 return wave, s, amdq, apdq

5.4 F-wave formulation

5.4.1 Principle

The f-wave method consists of decomposing the flux jump into f-waves

f(Qi)− f(Qi−1) =

mw∑
k=1

Zk,i−1/2,

where the f-wave Zk,i−1/2 can be related to the right eigenvector ŵk,i−1/2 of the Roe matrix:

Zk,i−1/2 = βk,i−1/2ŵk,i−1/2

where the coefficient βk,i−1/2 is the linear solution (see § 2.7):

βi−1/2 = L · (f(Qi)− f(Qi−1)).

with L = R−1. We find that

βi−1/2 =
1

2ĉ

(
Φl − ϕr + (û+ ĉ)(qr − ql)
Φr − ϕl − (û− ĉ)(qr − ql)

)
, (5.35)

where Φ is the shorthand notation: Φ = u2h+ gh2/2. The f-waves are then

Z1,i−1/2 = β1,i−1/2w1 =
Φl − Φr + (û+ ĉ)(qr − ql)

2ĉ

(
1

û− ĉ

)
(5.36)

and
Z2,i−1/2 = β2,i−1/2w2 =

Φr − Φl − (û− ĉ)(qr − ql)

2ĉ

(
1

û+ ĉ

)
. (5.37)

5.4.2 Implementation in Pyclaw

406 def shallow_water_fwave_1d(q_l, q_r, aux_l, aux_r, problem_data):
407 r"""Shallow water Riemann solver using fwaves
408
409 *problem_data* should contain:
410 - *grav* - (float) Gravitational constant
411 - *dry_tolerance* - (float) Set velocities to zero if h is below this
412 tolerance.
413 """
414
415 g = problem_data['grav']
416 dry_tolerance = problem_data['dry_tolerance']
417
418
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419 num_rp = q_l.shape[1]
420 num_eqn = 2
421 num_waves = 2
422
423 # initializing f-waves
424 fwave = np.empty( (num_eqn, num_waves, num_rp) )
425 # right eigenvectors
426 r1 = np.empty( (num_waves, num_rp) )
427 r2 = np.empty( (num_waves, num_rp) )
428 # initializing fluctuations and shock speeds
429 amdq = np.zeros( (num_eqn, num_rp) )
430 apdq = np.zeros( (num_eqn, num_rp) )
431 s = np.empty( (num_waves, num_rp) )
432
433
434 # Extract state
435 hl = q_l[0, :]
436 ql = q_l[1, :]
437 ul = np.where(hl > dry_tolerance, ql/hl , 0.0)
438 hr = q_r[0, :]
439 qr = q_r[1, :]
440 ur = np.where(hr > dry_tolerance, qr/hr, 0.0)
441
442 phi_l = hl * ul**2 + 0.5 * g * hl**2
443 phi_r = hr * ur**2 + 0.5 * g * hr**2
444 h_bar = 0.5 * (hr + hl)
445
446 # Speeds
447 u_hat = (np.sqrt(hl) * ul + np.sqrt(hr) * ur) / (np.sqrt(hl) + np.sqrt(

hr) )
448 c_hat = np.sqrt(g * h_bar)
449 lambda1 = u_hat - c_hat
450 lambda2 = u_hat + c_hat
451
452
453 beta1 = (phi_l - phi_r +lambda2*(qr-ql))/2/c_hat
454 beta2 = (phi_r - phi_l -lambda1*(qr-ql))/2/c_hat
455
456
457
458 r1[0, :] = 1.
459 r1[1, :] = u_hat - c_hat
460 r2[0, :] = 1.
461 r2[1, :] = u_hat + c_hat
462
463 s[0,:] = u_hat - c_hat
464 s[1,:] = u_hat + c_hat
465
466 # 1st f-wave
467 fwave[0,0,:] = beta1*r1[0,:]
468 fwave[1,0,:] = beta1*r1[1,:]
469 # 2nd f-wave
470 fwave[0,1,:] = beta2*r2[0,:]
471 fwave[1,1,:] = beta2*r2[1,:]
472
473 for m in range(num_eqn):
474 for mw in range(num_waves):
475 amdq[m, :] += (s[mw, :] < 0.0) * fwave[m, mw, :]
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476 apdq[m, :] += (s[mw, :] > 0.0) * fwave[m, mw, :]
477
478 amdq[m, :] += (s[mw, :] == 0.0) * fwave[m, mw, :] * 0.5
479 apdq[m, :] += (s[mw, :] == 0.0) * fwave[m, mw, :] * 0.5
480
481 return fwave, s, amdq, apdq
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5.5 Example: dam break

We consider a dam break problem with the following initial conditions: hl = 10 m et ul = 0 for x ≤ 0,
and hl = 0.5 m et ul = 0 for x > 0. We compare the three solvers: Roe (with or without the entropy
fix), the HLLE solver, and the f-wave formulation. Figures 5.4 and 5.5 show the comparison.
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Figure 5.4 Comparison between the analytical solution, the Roe (with entropy fix) and HLLE solution.
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Figure 5.5 Comparison between the analytical solution, the Roe (with no entropy fix) and f-wave
solution.





CHAPTER6
Shallow water equation with transport

6.1 Theory

Let us consider the shallow water equations seen in Chap. 5, supplemented with an equation represent-
ing the advection of a scalar quantity ϕ(x, t) (for instance, the concentration of a pollutant that does
not interplay with the water flow):

∂h

∂t
+

∂q

∂x
= 0, (6.1)

∂q

∂t
+

∂hu2

∂x
+ gh

∂h

∂x
= 0, (6.2)

∂hϕ

∂t
+

∂qϕ

∂x
= 0, (6.3)

where h denotes the flow depth, q = hu is the flow rate, and u the depth-averaged velocity. where g is
gravitational acceleration, and the unknowns are q, h and ϕ. In a matrix form, Eqs. (6.1)-(6.3) takes the
form:

∂

∂t
Q+

∂

∂x
f(Q) = 0, (6.4)

where

f =

 q
q2/h+ gh2/2

qϕ

 and Q =

 h
q
hϕ

 . (6.5)

The Jacobian is

f ′ =

 0 1 0
−u2 + gh 2u 0

−uϕ ϕ u

 , (6.6)

whose eigenvalues are
λ1 = u−

√
gh, λ2 = u and λ3 = u+

√
gh, (6.7)

associated with the right eigenvectors:

w1 =

 1
u−

√
gh

ϕ

 , w2 =

 0
0
1

 and w3 =

 1
u+

√
gh

ϕ

 . (6.8)

The scalar quantity ϕ is decoupled from the water flow, and its speed depends only on the water flow
velocity: λ2 = u. The associated field is said to be linearly degenerate because∇λ2 ·w2 = 0. This gives
rise to contact discontinuities: when ϕ experiences a shock, there is a discontinuity in u, and thus the
characteristic speeds are equal on either side of the shock waves (the characteristic curves are parallel
to the shock cuves). The condition ∇λ2 · w2 = 0 means that the eigenvalue is unchanged when we
move along the integral curve w2(ζ).

167
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6.2 Roe solver

6.2.1 Derivation

The Roe solver is close to the version derived in Chap. 5. The only difference lies in the adding of a
third wave. We need the following equations to write the Roe solver’s algorithm:

• The velocities associated with the intermediate state

û =
qi−1/

√
hi−1 + qi/

√
hi√

hi−1 +
√
hi

and c̄ =

√
1

2
(hi−1 + hi). (6.9)

• The waves W k:
W k = αkwk, k = 1, 3 (6.10)

where αk are the components of the α vector obtained by inverting the matrix R

α = R−1 ·∆Q =
1

2ĉ

 (û+ ĉ)∆Q1 −∆Q2

∆Q3 − ϕ∆Q1

(−û+ ĉ)∆Q1 +∆Q2

 (6.11)

where ĉ =
√
gh̄ and ∆Q = (∆Q1, ∆Q2, , ∆Q3). For the second wave, we impose that there

is no jump ∆Q1 associated with the contact discontinuity, and thus we impose

α2 = ∆Q3.

• the characteristic speeds
s1 = û− c̄, s2 = û and s3 = û+ c̄. (6.12)

• The fluctuations are

A+ ·∆Qi−1/2 =
3∑

k=1

min(λk
i−1/2, 0)W k,i−1/2,

A− ·∆Qi+1/2 =

3∑
k=1

max(λk
i−1/2, 0)W k,i−1/2,

which gives in the present context:

– if sk > 0, then amdq(m,i)␣=␣s*wave.
– if sk < 0, then apdq(m,i)␣=␣s*wave.

6.2.2 Implementation in Clawpack

482 subroutine rp1(maxmx,num_eqn,num_waves,num_aux,num_ghost,num_cells, &
483 ql,qr,auxl,auxr,wave,s,amdq,apdq)
484
485 ! Solve Riemann problems for the 1D shallow water equations
486 ! with an additional passively advected tracer:
487 ! (h)_t + (u h)_x = 0
488 ! (uh)_t + ( uuh + .5*gh^2 )_x = 0
489 ! c_t + uc_x = 0
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490 ! using Roe's approximate Riemann solver with entropy fix for
491 ! transonic rarefractions.
492
493 ! waves: 3
494 ! equations: 3
495
496 ! Conserved quantities:
497 ! 1 depth
498 ! 2 momentum
499 ! 3 tracer
500
501 ! See http://www.clawpack.org/riemann.html for a detailed explanation
502 ! of the Riemann solver API.
503
504 implicit none
505
506 integer, intent(in) :: maxmx, num_eqn, num_waves, num_aux, num_ghost, &
507 num_cells
508 real(kind=8), intent(in), dimension(num_eqn,1-num_ghost:maxmx+num_ghost

) :: ql, qr
509 real(kind=8), intent(in), dimension(num_aux,1-num_ghost:maxmx+num_ghost

) :: auxl, auxr
510 real(kind=8), intent(out) :: s(num_waves, 1-num_ghost:maxmx+num_ghost)
511 real(kind=8), intent(out) :: wave(num_eqn, num_waves, 1-num_ghost:maxmx

+num_ghost)
512 real(kind=8), intent(out), dimension(num_eqn,1-num_ghost:maxmx+

num_ghost) :: amdq,apdq
513
514 ! local variables:
515 real(kind=8) :: a1,a2,ubar,cbar,s0,s1,s2,s3,hr1,uhr1,hl2,uhl2,sfract,df
516 real(kind=8) :: delta(2)
517 integer :: i,m,mw
518 logical :: efix
519
520 data efix /.true./ ! Use entropy fix for transonic rarefactions
521
522 ! Gravity constant set in setprob.f or the shallow1D.py file
523 real(kind=8) :: grav
524 common /cparam/ grav
525
526 ! Main loop of the Riemann solver.
527 do 30 i=2-num_ghost,num_cells+num_ghost
528
529 ! compute Roe-averaged quantities:
530 ubar = (qr(2,i-1)/dsqrt(qr(1,i-1)) + ql(2,i)/dsqrt(ql(1,i)))/ &
531 ( dsqrt(qr(1,i-1)) + dsqrt(ql(1,i)) )
532 cbar=dsqrt(0.5d0*grav*(qr(1,i-1) + ql(1,i)))
533
534 ! delta(1)=h(i)-h(i-1) and delta(2)=hu(i)-hu(i-1)
535 delta(1) = ql(1,i) - qr(1,i-1)
536 delta(2) = ql(2,i) - qr(2,i-1)
537
538 ! Compute coeffs in the evector expansion of delta(1),delta(2)
539 a1 = 0.5d0*(-delta(2) + (ubar + cbar) * delta(1))/cbar
540 a2 = 0.5d0*( delta(2) - (ubar - cbar) * delta(1))/cbar
541
542 ! Finally, compute the waves.
543 wave(1,1,i) = a1
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544 wave(2,1,i) = a1*(ubar - cbar)
545 wave(3,1,i) = 0.d0
546 s(1,i) = ubar - cbar
547
548 wave(1,2,i) = a2
549 wave(2,2,i) = a2*(ubar + cbar)
550 wave(3,2,i) = 0.d0
551 s(2,i) = ubar + cbar
552
553 wave(1,3,i) = 0.d0
554 wave(2,3,i) = 0.d0
555 wave(3,3,i) = ql(3,i) - qr(3,i-1)
556 s(3,i) = ubar
557
558 30 enddo
559
560 ! Compute fluctuations amdq and apdq
561 ! ------------------------------------
562
563 if (efix) go to 110
564
565 ! No entropy fix
566 ! ----------------------------------------------
567 ! amdq = SUM s*wave over left-going waves
568 ! apdq = SUM s*wave over right-going waves
569
570 do m=1,num_waves
571 do i=2-num_ghost, num_cells+num_ghost
572 amdq(m,i) = 0.d0
573 apdq(m,i) = 0.d0
574 do mw=1,num_waves
575 if (s(mw,i) < 0.d0) then
576 amdq(m,i) = amdq(m,i) + s(mw,i)*wave(m,mw,i)
577 else
578 apdq(m,i) = apdq(m,i) + s(mw,i)*wave(m,mw,i)
579 endif
580 enddo
581 enddo
582 enddo
583
584 ! with no entropy fix we are done...
585 return
586
587 ! -----------------------------------------------
588 110 continue
589
590 ! compute the rightgoing flux differences:
591 ! df = SUM s*wave is the total flux difference and apdq = df - amdq
592
593 do i = 2-num_ghost, num_cells+num_ghost
594 do m=1,2
595 df = 0.d0
596 do mw=1,2
597 df = df + s(mw,i)*wave(m,mw,i)
598 enddo
599 apdq(m,i) = df - amdq(m,i)
600 enddo
601



6.2 Roe solver 171

602 ! tracer (which is in non-conservation form)
603 if (s(3,i) < 0) then
604 amdq(m,i) = amdq(m,i) + s(3,i)*wave(m,3,i)
605 else
606 apdq(m,i) = apdq(m,i) + s(3,i)*wave(m,3,i)
607 endif
608
609 enddo
610
611 return
612
613 end subroutine rp1

6.2.3 Implementation in Pyclaw

614 def shallow_roe_1D(q_l, q_r, aux_l, aux_r, problem_data):
615 r"""
616 Roe shallow water solver in 1d
617 """
618
619 # Array shapes
620 num_rp = q_l.shape[1]
621 num_eqn = 3
622 num_waves = 3
623
624 g = problem_data['grav']
625
626 # Output arrays
627 wave = np.empty( (num_eqn, num_waves, num_rp) )
628 s = np.zeros( (num_waves, num_rp) )
629 amdq = np.zeros( (num_eqn, num_rp) )
630 apdq = np.zeros( (num_eqn, num_rp) )
631
632 # Compute roe-averaged quantities
633 ubar = ( (q_l[1,:]/np.sqrt(q_l[0,:]) + q_r[1,:]/np.sqrt(q_r[0,:])) /
634 (np.sqrt(q_l[0,:]) + np.sqrt(q_r[0,:])) )
635 cbar = np.sqrt(0.5 * g * (q_l[0,:] + q_r[0,:]))
636
637 # Compute Flux structure
638 delta = q_r - q_l
639 delta1 = q_r[0,:] - q_l[0,:]
640 delta2 = q_r[1,:] - q_l[1,:]
641 alpha1 = 0.5 * (-delta2 + (ubar + cbar) * delta1) / cbar
642 alpha2 = 0.5 * ( delta2 - (ubar - cbar) * delta1) / cbar
643
644 # Compute each family of waves
645 wave[0,0,:] = alpha1
646 wave[1,0,:] = alpha1 * (ubar - cbar)
647 wave[2,0,:] = 0.
648 s[0,:] = ubar - cbar
649
650 wave[0,2,:] = alpha2
651 wave[1,2,:] = alpha2 * (ubar + cbar)
652 wave[2,2,:] = 0.
653 s[2,:] = ubar + cbar
654
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655 wave[0,1,:] = 0.
656 wave[1,1,:] = 0.
657 wave[2,1,:] = q_r[2,:] - q_l[2,:]
658 s[1,:] = ubar
659
660 s_index = np.zeros((3,num_rp))
661 for m in range(num_eqn):
662 for mw in range(num_waves):
663 s_index[0,:] = s[mw,:]
664 amdq[m,:] += np.min(s_index,axis=0) * wave[m,mw,:]
665 apdq[m,:] += np.max(s_index,axis=0) * wave[m,mw,:]
666
667
668 return wave, s, amdq, apdq

6.3 HLLC Solver

6.3.1 Principle

The HLLC solver is an extension of the HLL scheme proposed by Eleuterio Toro (Toro, 2001) to cope
with the existence of a contact discontinuity. The HLL solver defines an intermediate state separating
the left and right initial states. The HLLC introduces two distinct intermediate states split by the second
characteristic x = λ2t (see Fig. 6.1). The fluxes associated with the two intermediate states are defined
using the Rankine-Hugoniot equation:

F ∗,l − F l = s1(Q∗,l −Ql), (6.13)

F ∗,r − F r = s3(Q∗,r −Qr) (6.14)

where F ∗,l = f(Q∗,l) and F ∗,r = f(Q∗,r).

Figure 6.1 The three waves separating the left and right initial states.

In the absence of the advection equation (6.3), there would be only one intermediate state. As
tracer advection does not interplay with water flow, we impose that the first two components (those
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associated with the water flow) of F ∗,r and F ∗,l are identical:

F∗,l,1 = F∗,r,1 =
λ3Fl,1 − λ1Fr,1

λ3 − λ1
− λ1λ3

λ3 − λ1

hl − hr
, (6.15)

F∗,l,2 = F∗,r,2 =
λ3Fl,2 − λ1Fr,2

λ3 − λ1
− λ1λ3

λ3 − λ1

hlul − hrur
, (6.16)

whereF1 = hu andF2 = hu2+gh2/2. For the third component, we impose that there is no jump across
the 1- and 3-characteristics. The only jump in huϕ is across x = λ2t. Because the third component
huϕ is the product of ϕ and the first F component hu, then we can write

F∗,l,3 = F∗,l,1ϕl, (6.17)

F∗,r,3 = F∗,r,2ϕr. (6.18)

The flux at the interface x = 0 is thus F∗,l,3 if λ2 > 0, and F∗,r,3 if λ2 > 0.

An estimate of the wave speed λ2 is (Toro, 2001):

λ2 =
λ1hr(ur − λ3)− λ3hl(ul − λ1)

hr(ur − λ3)− hl(ul − λ1)
. (6.19)

We consider three waves

W 1 = Ql,∗ −Ql, W 2 = Qr,∗ −Ql,∗ and W 3 = Qr −Qr,∗. (6.20)

In § 2.6 and 5.3.1, we have shown that the intermediate state for the water flow is:

Q†
∗ =

s3Q
†
r − s1Q

†
l

s3 − s1
−

F †
r − F †

l

s3 − s1
,

where Q†
∗ = (h, hu) and F † = (q, Φ) (with q = hu and Φ = hu2 + gh2/2) are the first two

components of Q and F . We thus have

h∗ =
s3hr − s1hl
s3 − s1

− s3qr − s1ql
s3 − s1

,

and
q∗ = (hu)∗ =

s3qr − s1ql
s3 − s1

− s3Φr − s1Φl

s3 − s1
.

We then deduce:

W †
1 =

(
h∗ − hl
q∗ − ql

)
, W †

2 =

(
0
0

)
and W †

3 =

(
hr − h∗
qr − q∗

)
.

For the third component, we have

W1,3 = 0, W2,3 = ϕr − ϕl, and W1,3 = 0.

6.3.2 Implementation in Pyclaw
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669 def shallow_hllc_1D(q_l,q_r,aux_l,aux_r,problem_data):
670 r"""
671 HLLC shallow water solver ::
672 """
673 # Array shapes
674 num_rp = q_l.shape[1]
675 num_eqn = 3
676 num_waves = 3
677
678 g = problem_data['grav']
679
680 # Output arrays
681 wave = np.empty( (num_eqn, num_waves, num_rp) )
682 s = np.empty( (num_waves, num_rp) )
683 amdq = np.zeros( (num_eqn, num_rp) )
684 apdq = np.zeros( (num_eqn, num_rp) )
685
686 h_l = q_l[0,:]
687 h_r = q_r[0,:]
688 hu_l = q_l[1,:]
689 hu_r = q_r[1,:]
690 u_r = hu_r/h_r
691 c_r = np.sqrt(g * h_r)
692 u_l = hu_l/h_l
693 c_l = np.sqrt(g * h_l)
694 Phi_l = u_l**2*h_l+0.5*g*h_l**2
695 Phi_r = u_r**2*h_r+0.5*g*h_r**2
696
697 # Compute Roe and right and left speeds
698 u_hat = (hu_l/np.sqrt(h_l) + hu_r/np.sqrt(h_r))/(np.sqrt(h_l) + np.sqrt

(h_r))
699 c_hat = np.sqrt(0.5 * g * (h_r + h_l))
700
701 # Compute Einfeldt speeds
702 s_index = np.empty((2,num_rp))
703 s_index[0,:] = u_hat - c_hat
704 s_index[1,:] = u_l - c_l
705 s[0,:] = np.min(s_index,axis=0)
706 s_index[0,:] = u_r + c_r
707 s_index[1,:] = u_hat + c_hat
708 s[2,:] = np.max(s_index,axis=0)
709
710 lambda_1 = u_hat - c_hat
711 lambda_3 = u_hat + c_hat
712 u_toro = (lambda_1*h_r*(u_r-lambda_3) - lambda_3*h_l*(u_l-lambda_1) )

\
713 /(h_r*(u_r-lambda_3) - h_l*(u_l-lambda_1))
714 s[1,:] = u_hat
715
716 # Compute middle state
717 h_star = (h_r * s[2,:] - h_l * s[0,:]-(hu_r-hu_l))/(s[2,:]-s[0,:])
718 hu_star = (hu_r * s[2,:] - hu_l * s[0,:]-(Phi_r-Phi_l))/(s[2,:]-s[0,:])
719
720 # Compute each family of waves
721 wave[0,0,:] = h_star - h_l
722 wave[1,0,:] = hu_star - hu_l
723 wave[2,0,:] = 0.
724 wave[0,1,:] = 0.
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725 wave[1,1,:] = 0.
726 wave[2,1,:] = q_r[2,:]-q_l[2,:]
727 wave[0,2,:] = h_r - h_star
728 wave[1,2,:] = hu_r - hu_star
729 wave[2,2,:] = 0.
730
731 # Compute variations
732 s_index = np.zeros((3,num_rp))
733 for m in range(num_eqn):
734 for mw in range(num_waves):
735 s_index[0,:] = s[mw,:]
736 amdq[m,:] += np.min(s_index,axis=0) * wave[m,mw,:]
737 apdq[m,:] += np.max(s_index,axis=0) * wave[m,mw,:]
738
739 return wave, s, amdq, apdq

6.4 F-wave formulation

6.4.1 Principle

The f-wave method consists of decomposing the jump in the flux (6.5) into three f-waves

f(Qi)− f(Qi−1) =
3∑

k=1

Zk,i−1/2,

where the f-wave Zk,i−1/2 can be related to the right eigenvector ŵk,i−1/2 of the Roe matrix:

Zk,i−1/2 = βk,i−1/2ŵk,i−1/2

where the coefficient βk,i−1/2 is the linear solution (see § 2.7):

βi−1/2 = L · (f(Qi)− f(Qi−1)).

with L = R−1. We find that:

βi−1/2 =
1

2ĉ

 Φl − Φr + (û+ ĉ)(qr − ql)
2ĉ(ϕrqr − ϕlql + ϕ(qr − ql))
Φr − Φl − (û− ĉ)(qr − ql)

 , (6.21)

where Φ = hu2 + gh2/2. The f-waves are then:

Z1,i−1/2 = β1,i−1/2w1 =
Φl − Φr + (û+ ĉ)(qr − ql)

2ĉ

 1
û− ĉ
ϕ

 ,

Z2,i−1/2 = β2,i−1/2w2 = (ϕrqr − ϕlql − ϕ(qr − ql))

 0
0
1


and

Z3,i−1/2 = β3,i−1/2w3 =
Φr − Φl − (û− ĉ)(qr − ql)

2ĉ

 1
û+ ĉ
ϕ

 .
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As for the Roe solver, we assume that there is no jump in ϕ for the 1- and 3- shock waves while for the
2-wave, there is no jump in h and hu (and so qr = ql = q̂ = ûh̄), and so the correct f-waves are:

Z1,i−1/2 = β1,i−1/2w1 =
Φl − Φr + (û+ ĉ)(qr − ql)

2ĉ

 1
û− ĉ
0

 , (6.22)

Z2,i−1/2 = β2,i−1/2w2 = (ϕr − ϕl)q̂

 0
0
1

 (6.23)

and

Z3,i−1/2 = β3,i−1/2w3 =
Φr − Φl − (û− ĉ)(qr − ql)

2ĉ

 1
û+ ĉ
0

 . (6.24)

6.4.2 Implementation in Pyclaw

740 def shallow_hllc_fwave_1d(q_l, q_r, aux_l, aux_r, problem_data):
741 r"""Shallow water Riemann solver using fwaves
742 """
743
744 g = problem_data['grav']
745 dry_tolerance = problem_data['dry_tolerance']
746
747 num_rp = q_l.shape[1]
748 num_eqn = 3
749 num_waves = 3
750
751 # Initializing arrays
752 fwave = np.empty( (num_eqn, num_waves, num_rp) )
753 s = np.empty( (num_waves, num_rp) )
754 amdq = np.zeros( (num_eqn, num_rp) )
755 apdq = np.zeros( (num_eqn, num_rp) )
756 r1 = np.zeros( (num_waves, num_rp) )
757 r2 = np.zeros( (num_waves, num_rp) )
758 r3 = np.zeros( (num_waves, num_rp) )
759
760 # Extract state
761 h_l = q_l[0, :]
762 h_r = q_r[0, :]
763 hu_l = q_l[1, :]
764 hu_r = q_r[1, :]
765 u_l = np.where(h_l > dry_tolerance, hu_l / h_l, 0.0)
766 u_r = np.where(h_r > dry_tolerance, hu_r / h_r, 0.0)
767
768 # Flux and Roe depth
769 phi_l = h_l * u_l**2 + 0.5 * g * h_l**2
770 phi_r = h_r * u_r**2 + 0.5 * g * h_r**2
771 h_bar = 0.5 * (h_l + h_r)
772
773 # Speeds
774 u_hat = (np.sqrt(h_l)*u_l + np.sqrt(h_r)*u_r)/ (np.sqrt(h_l) + np.sqrt(

h_r))
775 c_hat = np.sqrt(g * h_bar)
776
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777 s[0, :] = np.amin(np.vstack((u_l - np.sqrt(g * h_l), u_hat - c_hat)),
axis=0)

778 s[1, :] = u_hat
779 s[2, :] = np.amax(np.vstack((u_r + np.sqrt(g * h_r), u_hat + c_hat)),

axis=0)
780
781 beta1 = (phi_l - phi_r + (u_hat+c_hat)*(hu_r-hu_l))/2./c_hat
782 beta2 = (q_r[2, :]- q_l[2, :])*u_hat
783 beta3 = (phi_r - phi_l - (u_hat-c_hat)*(hu_r-hu_l))/2./c_hat
784
785 r1[0, :] = 1.
786 r1[1, :] = u_hat - c_hat
787 r1[2, :] = 0.
788
789 r2[0, :] = 0.
790 r2[1, :] = 0.
791 r2[2, :] = 1.
792
793 r3[0, :] = 1.
794 r3[1, :] = u_hat + c_hat
795 r3[2, :] = 0.
796
797 fwave[0, 0, :] = beta1 * r1[0, :]
798 fwave[1, 0, :] = beta1 * r1[1, :]
799 fwave[2, 0, :] = beta1 * r1[2, :]
800
801 fwave[0, 1, :] = beta2 * r2[0, :]
802 fwave[1, 1, :] = beta2 * r2[1, :]
803 fwave[2, 1, :] = beta2 * r2[2, :]
804
805 fwave[0, 2, :] = beta3 * r3[0, :]
806 fwave[1, 2, :] = beta3 * r3[1, :]
807 fwave[2, 2, :] = beta3 * r3[2, :]
808
809 for m in range(num_eqn):
810 for mw in range(num_waves):
811 amdq[m, :] += (s[mw, :] < 0.0) * fwave[m, mw, :]
812 apdq[m, :] += (s[mw, :] > 0.0) * fwave[m, mw, :]
813
814 return fwave, s, amdq, apdq

6.5 Example: dam break

We consider a dam break problem with the following initial conditions: hl = 3 m et ul = 0 for x ≤ 0,
and hl = 1 m et ul = 0 for x > 0. We compare the two solvers: Roe (with no entropy fix) and the
f-wave formulation of the HLLC solver. Figures 6.2 shows the comparison.
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Figure 6.2 Comparison of the three methods: Roe solver, HLLC, and the f-wave variant of the HLLC
algorithm. Computations done with g = 1 m/s2.



CHAPTER7
Shallow water equations with a source

term

7.1 Theory

7.1.1 flow resistance

In an one-dimensional fixed Cartesian frame, the Saint-Venant equations take the tensorial form

∂

∂t
Q+∇f(Q) = S, (7.1)

where Q = (h, hu) is the unknown, and S = (0, S) is the source term. The computation strategy
involves first solving the homogenous problem (LeVeque, 2002) :

∂

∂t
Q+∇f(Q) = 0, (7.2)

then correcting the solution by taking the effect of the source term on the momentum q = hu:

ϱ
d
dtq = S(Q), (7.3)

where S(Q) takes the following form if we consider a flow experiencing flow resistance:

S(U) = − ϱg

K2h1/3
|u|u, (7.4)

= − ϱg

K2h7/3
|q|q, (7.5)

where K is the Manning-Strickler coefficient.

Let us assume that we have computed the solution q∗ to the homogenous equation (7.2), and we
are now seeking the solution at time k + 1. Using a semi-implicit discretization of (7.3) leads to

qk+1 = q∗ − dt g

K2h7/3
|q∗|qk+1, (7.6)

q∗ = qk+1

(
1 +

gdt
K2h7/3

|q∗|
)
, (7.7)

qk+1 =
q∗

1 + dt g

K2h7/3
|q∗|

. (7.8)
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